Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15186, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645575

RESUMO

The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.


Assuntos
Ácido Acético/economia , Ácido Acético/farmacologia , Análise Custo-Benefício , Salinidade , Água do Mar/química , Vigna/fisiologia , Biomassa , Gases/metabolismo , Minerais/metabolismo , Osmose , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Potássio/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Vigna/efeitos dos fármacos , Água
2.
Mol Biol Rep ; 37(2): 923-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19685160

RESUMO

A full length spermidine synthase (PgSPD) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The cDNA was 1,188 nucleotides long and had an open reading frame of 1,002 bp with a deduced amino acid sequence of 333 residues. The calculated molecular mass of the matured protein is approximately 36.38 kDa with a predicated isoelectric point of 5.02. A GenBank BlastX search revealed that the deduced amino acid of PgSPD shares a high degree homology with the Lotus japonicas (78.5% identity, 84% similarity). In the present study we analyzed the expression of PgSPD under various environmental stresses at different time points using real time-PCR. We also determined polyamine content in adventitious roots under salt and chilling stress using HPLC. Our results reveal that PgSPD is slightly induced by mannitol and CuSO4. Otherwise, salt, chilling, abscisic acid and jasmonic acid triggered a significant induction (more than tenfold) of PgSPD within 12-24 h post-treatment, especially; PgSPD was prominently induced by salt (41.5-fold). These results suggest that the transcript of Spd gene involved in PA biosynthesis shows different profiles of expression in response to environmental stress.


Assuntos
Panax/genética , Espermidina Sintase/genética , Ácido Abscísico/farmacologia , Clonagem Molecular , DNA Complementar/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Moleculares , Panax/enzimologia , Panax/metabolismo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poliaminas/metabolismo , Homologia de Sequência do Ácido Nucleico , Espermidina Sintase/isolamento & purificação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA