Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2518, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130873

RESUMO

Clinical updates suggest conserving metastatic sentinel lymph nodes (SLNs) of breast cancer (BC) patients during surgery; however, the immunoadjuvant potential of this strategy is unknown. Here we leverage an immune-fueling flex-patch to animate metastatic SLNs with personalized antitumor immunity. The flex-patch is implanted on the postoperative wound and spatiotemporally releases immunotherapeutic anti-PD-1 antibodies (aPD-1) and adjuvants (magnesium iron-layered double hydroxide, LDH) into the SLN. Genes associated with citric acid cycle and oxidative phosphorylation are enriched in activated CD8+ T cells (CTLs) from metastatic SLNs. Delivered aPD-1 and LDH confer CTLs with upregulated glycolytic activity, promoting CTL activation and cytotoxic killing via metal cation-mediated shaping. Ultimately, CTLs in patch-driven metastatic SLNs could long-termly maintain tumor antigen-specific memory, protecting against high-incidence BC recurrence in female mice. This study indicates a clinical value of metastatic SLN in immunoadjuvant therapy.


Assuntos
Linfonodo Sentinela , Feminino , Camundongos , Animais , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Recidiva Local de Neoplasia/patologia , Adjuvantes Imunológicos/uso terapêutico , Linfonodos/patologia
2.
Lab Chip ; 21(24): 4749-4759, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34761772

RESUMO

Microfluidics has been the most promising platform for drug screening with a limited number of cells. However, convenient on-chip preparation of a wide range of drug concentrations remains a large challenge and has restricted wide acceptance of microfluidics in precision medicine. In this paper, we report a digital microfluidic system with an innovative control structure and chip design for on-chip drug dispensing to generate concentrations that span three to four orders of magnitude, enabling single drug or combinatorial multi-drug screening with simple electronic control. Specifically, we utilize droplet ejection from a drug drop sitting on a special electrode, named a drug dispenser, under high-voltage pulse actuation to deliver the desired amount of drugs to be picked up by a cell suspension drop driven by low-voltage sine wave actuation. Our proof-of-principle validation for this technique as a convenient single and multi-drug screening involved testing of the drug toxicity of two chemotherapeutics, cisplatin (Cis) and epirubicin (EP), towards MDA-MB-231 breast cancer cells and MCF-10A normal breast cells. The results are consistent with those screened based on traditional 96-well plates. These findings demonstrate the reliability of the drug screening system with an on-chip drug dispenser. This system with fewer cancer cells, less drug consumption, a small footprint, and high scalability with regard to concentration could pave the way for drug screening on biopsied primary tumor cells for precision medicine or any concentration-related research.


Assuntos
Neoplasias , Preparações Farmacêuticas , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Dispositivos Lab-On-A-Chip , Microfluídica , Reprodutibilidade dos Testes
3.
Adv Sci (Weinh) ; 8(21): e2100974, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514747

RESUMO

Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates FGF signaling. Various FGFR2 alterations are detected in breast cancer, yet it remains unclear if activation of FGFR2 signaling initiates tumor formation. In an attempt to answer this question, a mouse model berrying an activation mutation of FGFR2 (FGFR2-S252W) in the mammary gland is generated. It is found that FGF/FGFR2 signaling drives the development of triple-negative breast cancer accompanied by epithelial-mesenchymal transition that is regulated by FGFR2-STAT3 signaling. It is demonstrated that FGFR2 suppresses BRCA1 via the ERK-YY1 axis and promotes tumor progression. BRCA1 knockout in the mammary gland of the FGFR2-S252W mice significantly accelerated tumorigenesis. It is also shown that FGFR2 positively regulates PD-L1 and that a combination of FGFR2 inhibition and immune checkpoint blockade kills cancer cells. These data suggest that the mouse models mimic human breast cancers and can be used to identify actionable therapeutic targets.


Assuntos
Proteína BRCA1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antígeno B7-H1/metabolismo , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoterapia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Fator de Transcrição YY1/metabolismo
4.
Nat Commun ; 12(1): 3046, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031426

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer type with high morbidity in Southeast Asia, however the pathogenic mechanism of this disease is poorly understood. Using integrative pharmacogenomics, we find that NPC subtypes maintain distinct molecular features, drug responsiveness, and graded radiation sensitivity. The epithelial carcinoma (EC) subtype is characterized by activations of microtubule polymerization and defective mitotic spindle checkpoint related genes, whereas sarcomatoid carcinoma (SC) and mixed sarcomatoid-epithelial carcinoma (MSEC) subtypes exhibit enriched epithelial-mesenchymal transition (EMT) and invasion promoting genes, which are well correlated with their morphological features. Furthermore, patient-derived organoid (PDO)-based drug test identifies potential subtype-specific treatment regimens, in that SC and MSEC subtypes are sensitive to microtubule inhibitors, whereas EC subtype is more responsive to EGFR inhibitors, which is synergistically enhanced by combining with radiotherapy. Through combinational chemoradiotherapy (CRT) screening, effective CRT regimens are also suggested for patients showing less sensitivity to radiation. Altogether, our study provides an example of applying integrative pharmacogenomics to establish a personalized precision oncology for NPC subtype-guided therapies.


Assuntos
Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Farmacogenética/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Medicina de Precisão , Transcriptoma , Sequenciamento do Exoma
5.
Proc Natl Acad Sci U S A ; 113(12): 3197-202, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951653

RESUMO

Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications.


Assuntos
Cromossomos Humanos X , Impressão Genômica , Razão de Masculinidade , Inativação do Cromossomo X , Feminino , Fertilização in vitro , Humanos
6.
PLoS One ; 10(6): e0130382, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076347

RESUMO

Assisted reproductive technology (ART) is being increasingly applied to overcome infertility. However, the in vitro production process, the main procedure of ART, can lead to aberrant embryonic development and health-related problems in offspring. Understanding the mechanisms underlying the ART-induced side effects is important to improve the ART process. In this study, we carried out comparative transcriptome profiling between in vivo- (IVO) and in vitro- produced (IVP) mouse blastocysts. Our results suggested that aberrant actin organization might be a major factor contributing to the impaired development of IVP embryos. To test this, we examined the effect of actin disorganization on the development of IVP preimplantation embryos. Specific disruption of actin organization by cytochalasin B (CB) indicated that well-organized actin is essential for in vitro embryonic development. Supplementing the culture medium with 10(-9) M melatonin, a cytoskeletal modulator in adult somatic cells, significantly reversed the disrupted expression patterns of genes related to actin organization, including Arhgef2, Bcl2, Coro2b, Flnc, and Palld. Immunofluorescence analysis showed that melatonin treatment of IVP embryos significantly improved the distribution and organization of actin filaments (F-actin) from the 8-cell stage onwards. More importantly, we found that melatonin alleviated the CB-mediated aberrant F-actin distribution and organization and rescued CB-induced impaired embryonic development. This is the first study to indicate that actin disorganization is implicated in impaired development of IVP embryos during the preimplantation stage. We also demonstrated that improving actin organization is a promising strategy to optimize existing IVP systems.


Assuntos
Actinas/genética , Blastocisto/citologia , Citocalasina B/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Melatonina/farmacologia , Actinas/biossíntese , Animais , Sequência de Bases , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos ICR , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA