Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7211, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531905

RESUMO

In this study, for the first time, we explored a dataset of functional magnetic resonance images collected during focused attention and open monitoring meditation before and after a five-day psilocybin-assisted meditation retreat using a recently established approach, based on the Mapper algorithm from topological data analysis. After generating subject-specific maps for two groups (psilocybin vs. placebo, 18 subjects/group) of experienced meditators, organizational principles were uncovered using graph topological tools, including the optimal transport (OT) distance, a geometrically rich measure of similarity between brain activity patterns. This revealed characteristics of the topology (i.e. shape) in space (i.e. abstract space of voxels) and time dimension of whole-brain activity patterns during different styles of meditation and psilocybin-induced alterations. Most interestingly, we found that (psilocybin-induced) positive derealization, which fosters insightfulness specifically when accompanied by enhanced open-monitoring meditation, was linked to the OT distance between open-monitoring and resting state. Our findings suggest that enhanced meta-awareness through meditation practice in experienced meditators combined with potential psilocybin-induced positive alterations in perception mediate insightfulness. Together, these findings provide a novel perspective on meditation and psychedelics that may reveal potential novel brain markers for positive synergistic effects between mindfulness practices and psilocybin.


Assuntos
Alucinógenos , Meditação , Humanos , Psilocibina , Meditação/métodos , Encéfalo , Mapeamento Encefálico
2.
Hum Brain Mapp ; 42(12): 3733-3749, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34132441

RESUMO

Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting-state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub-regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective-motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Potenciais Evocados/fisiologia , Rede Nervosa/fisiopatologia , Neuralgia/fisiopatologia , Nociceptividade/fisiologia , Paraplegia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Tálamo/fisiopatologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Doença Crônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Neuralgia/diagnóstico por imagem , Paraplegia/diagnóstico por imagem , Paraplegia/etiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Tálamo/diagnóstico por imagem
3.
Neuroimage ; 221: 117194, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711065

RESUMO

The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN. Specifically, 15 participants trained to control the difference between SAN and DMN hemodynamic activity and completed behavioral attention tests before and after neurofeedback training. Through training, participants improved controlling the differential SAN-DMN feedback signal, which was accomplished mainly through deactivating DMN. After training, participants were able to apply learned self-regulation of the differential feedback signal even when feedback was no longer available (i.e., during transfer runs). The neurofeedback group improved in sustained attention after training, although this improvement was temporally limited and rarely exceeded mere practice effects that were controlled by a test-retest behavioral control group. The learned self-regulation and the behavioral outcomes suggest that neurofeedback training of differential SAN and DMN activity has the potential to become a non-invasive and non-pharmacological tool to enhance attention and mitigate specific attention deficits.


Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Rede Nervosa/fisiologia , Neurorretroalimentação/fisiologia , Prática Psicológica , Autocontrole , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
4.
J Alzheimers Dis ; 49(1): 237-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444755

RESUMO

Alterations in brain structures, including progressive neurodegeneration, are a hallmark in patients with Alzheimer's disease (AD). However, pathological mechanisms, such as the accumulation of amyloid and the proliferation of tau, are thought to begin years, even decades, before the initial clinical manifestations of AD. In this study, we compare the brain anatomy of amnestic mild cognitive impairment patients (aMCI, n = 16) to healthy subjects (CS, n = 22) using cortical thickness, subcortical volume, and shape analysis, which we believe to be complimentary to volumetric measures. We were able to replicate "classical" cortical thickness alterations in aMCI in the hippocampus, amygdala, putamen, insula, and inferior temporal regions. Additionally, aMCI showed significant thalamic and striatal shape differences. We observed higher global amyloid deposition in aMCI, a significant correlation between striatal displacement and global amyloid, and an inverse correlation between executive function and right-hemispheric thalamic displacement. In contrast, no volumetric differences were detected in thalamic, striatal, and hippocampal regions. Our results provide new evidence for early subcortical neuroanatomical changes in patients with aMCI, which are linked to cognitive abilities and amyloid deposition. Hence, shape analysis may aid in the identification of structural biomarkers for identifying individuals at highest risk of conversion to AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
5.
Eur J Neurosci ; 41(2): 264-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352218

RESUMO

Coordinated attention to information from multiple senses is fundamental to our ability to respond to salient environmental events, yet little is known about brain network mechanisms that guide integration of information from multiple senses. Here we investigate dynamic causal mechanisms underlying multisensory auditory-visual attention, focusing on a network of right-hemisphere frontal-cingulate-parietal regions implicated in a wide range of tasks involving attention and cognitive control. Participants performed three 'oddball' attention tasks involving auditory, visual and multisensory auditory-visual stimuli during fMRI scanning. We found that the right anterior insula (rAI) demonstrated the most significant causal influences on all other frontal-cingulate-parietal regions, serving as a major causal control hub during multisensory attention. Crucially, we then tested two competing models of the role of the rAI in multisensory attention: an 'integrated' signaling model in which the rAI generates a common multisensory control signal associated with simultaneous attention to auditory and visual oddball stimuli versus a 'segregated' signaling model in which the rAI generates two segregated and independent signals in each sensory modality. We found strong support for the integrated, rather than the segregated, signaling model. Furthermore, the strength of the integrated control signal from the rAI was most pronounced on the dorsal anterior cingulate and posterior parietal cortices, two key nodes of saliency and central executive networks respectively. These results were preserved with the addition of a superior temporal sulcus region involved in multisensory processing. Our study provides new insights into the dynamic causal mechanisms by which the AI facilitates multisensory attention.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Testes Neuropsicológicos , Estimulação Luminosa , Adulto Jovem
6.
Psychophysiology ; 51(1): 60-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24016238

RESUMO

Detecting unexpected environmental change causes modulation of autonomic activity essential for survival. Understanding the neural mechanisms associated with responses to loud sounds may provide insights into the pathophysiology of posttraumatic stress disorder (PTSD), since individuals with PTSD exhibit heightened autonomic responses to unexpected loud sounds. We combined fMRI with autonomic psychophysiological assessment to investigate central and peripheral reactivity to loud tones in 20 healthy participants. Activity in anterior insula, pregenual anterior cingulate cortex, anterior midcingulate cortex, supplementary motor area, supramarginal gyrus, and cerebellar lobules VIII-IX was associated with both tones and concomitant skin conductance responses. Since regions signaling unexpected external events modulate autonomic activity, heightened loud tone autonomic responses in PTSD may reflect sensitization of this "salience" network.


Assuntos
Estimulação Acústica , Sistema Nervoso Autônomo/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reflexo de Sobressalto , Adulto Jovem
7.
Neurosurg Focus ; 32(1): E1, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22208894

RESUMO

OBJECT: Recent technological developments open the field of therapeutic application of focused ultrasound to the brain through the intact cranium. The goal of this study was to apply the new transcranial magnetic resonance imaging-guided focused ultrasound (tcMRgFUS) technology to perform noninvasive central lateral thalamotomies (CLTs) as a treatment for chronic neuropathic pain. METHODS: In 12 patients suffering from chronic therapy-resistant neuropathic pain, tcMRgFUS CLT was proposed. In 11 patients, precisely localized thermal ablations of 3-4 mm in diameter were produced in the posterior part of the central lateral thalamic nucleus at peak temperatures between 51 ° C and 64 ° C with the aid of real-time patient monitoring and MR imaging and MR thermometry guidance. The treated neuropathic pain syndromes had peripheral (5 patients) or central (6 patients) origins and covered all body parts (face, arm, leg, trunk, and hemibody). RESULTS: Patients experienced mean pain relief of 49% at the 3-month follow-up (9 patients) and 57% at the 1-year follow-up (8 patients). Mean improvement according to the visual analog scale amounted to 42% at 3 months and 41% at 1 year. Six patients experienced immediate and persisting somatosensory improvements. Somatosensory and vestibular clinical manifestations were always observed during sonication time because of ultrasound-based neuronal activation and/or initial therapeutic effects. Quantitative electroencephalography (EEG) showed a significant reduction in EEG spectral overactivities. Thermal ablation sites showed sharply delineated ellipsoidal thermolesions surrounded by short-lived vasogenic edema. Lesion reconstructions (18 lesions in 9 patients) demonstrated targeting precision within a millimeter for all 3 coordinates. There was 1 complication, a bleed in the target with ischemia in the motor thalamus, which led to the introduction of 2 safety measures, that is, the detection of a potential cavitation by a cavitation detector and the maintenance of sonication temperatures below 60 ° C. CONCLUSIONS: The authors assert that tcMRgFUS represents a noninvasive, precise, and radiation-free neurosurgical technique for the treatment of neuropathic pain. The procedure avoids mechanical brain tissue shift and eliminates the risk of infection. The possibility of applying sonication thermal spots free from trajectory restrictions should allow one to optimize target coverage. The real-time continuous MR imaging and MR thermometry monitoring of targeting accuracy and thermal effects are major factors in optimizing precision, safety, and efficacy in an outpatient context.


Assuntos
Dor Crônica/cirurgia , Imageamento por Ressonância Magnética , Neuralgia/cirurgia , Cirurgia Assistida por Computador , Tálamo/cirurgia , Procedimentos Cirúrgicos Ultrassônicos/métodos , Seguimentos , Humanos , Procedimentos Neurocirúrgicos/métodos , Medição da Dor
8.
Neuroimage ; 49(4): 2983-94, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19878725

RESUMO

We investigated (i) the central representation of lower urinary tract (LUT) control and (ii-iii) the acute and short-term central neuromodulatory effect of peripheral pudendal nerve stimulation in incomplete spinal cord injured (SCI) patients using functional magnetic resonance imaging (fMRI). The urinary bladder of eight SCI patients has been passively filled and emptied using a catheter, to identify the neural substrate of bladder control (i), and with simultaneous peripheral pudendal nerve stimulation to investigate its acute central neuromodulatory effect (ii). To identify the potential effects of pudendal nerve stimulation treatment (iii), six patients underwent a 2-week training using pudendal nerve stimulation followed by another fMRI session of bladder filling. The pre- and post-training fMRI results have been compared and correlated with the patient's pre- and post-training urological status. Our results suggest that the central representation of bladder filling sensation is preserved in the subacute stage of incomplete SCI. However, compared to earlier data from healthy subjects, it shows decreased neural response in right prefrontal areas and increased in left prefrontal regions, indicating diminished inhibitory micturition control as well as, compensatory or decompensatory reorganization of bladder control. We also provide evidence for a neuromodulatory effect of acute pudendal nerve stimulation, which was most prominent in the right posterior insula, a brain region implicated in homeostatic interoception in human. Pudendal stimulation training also induced significant neuromodulation, predominantly signal increases, in the normal cortical network of bladder control. Correlations with the patient's urological status indicate that this neuromodulatory effect may reflect the clinical improvement following training.


Assuntos
Córtex Cerebral/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Bexiga Urinária/inervação , Bexiga Urinária/fisiopatologia , Incontinência Urinária/fisiopatologia , Incontinência Urinária/reabilitação , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Sensação , Traumatismos da Medula Espinal/complicações , Resultado do Tratamento , Incontinência Urinária/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA