RESUMO
Sugi (Cryptomeria japonica D. Don) is an economically important coniferous tree in Japan. However, abundant sugi pollen grains are dispersed and transported by the wind each spring and cause a severe pollen allergy syndrome (Japanese cedar pollinosis). The use of pollen-free sugi that cannot produce pollen has been thought as a countermeasure to Japanese cedar pollinosis. The sugi CjACOS5 gene is an ortholog of Arabidopsis ACOS5 and rice OsACOS12, which encode an acyl-CoA synthetase that is involved in the synthesis of sporopollenin in pollen walls. To generate pollen-free sugi, we mutated CjACOS5 using the CRISPR/Cas9 system. As a result of sugi transformation mediated by Agrobacterium tumefaciens harboring the CjACOS5-targeted CRISPR/Cas9 vector, 1 bp-deleted homo biallelic mutant lines were obtained. Chimeric mutant lines harboring both mutant and wild-type CjACOS5 genes were also generated. The homo biallelic mutant lines had no-pollen in male strobili, whereas chimeric mutant lines had male strobili with or without pollen grains. Our results suggest that CjACOS5 is essential for the production of pollen in sugi and that its disruption is useful for the generation of pollen-free sugi. In addition to conventional transgenic technology, genome editing technology, including CRISPR/Cas9, can confer new traits on sugi.
Assuntos
Arabidopsis , Cryptomeria , Rinite Alérgica Sazonal , Humanos , Rinite Alérgica Sazonal/genética , Árvores , Cryptomeria/genética , Sistemas CRISPR-Cas , Pólen/genéticaRESUMO
A tobacco calmodulin-like protein, rgs-CaM, has been shown to interact with viruses in a variety of ways; it contributes to geminivirus infections but is also involved in primed immunity to the cucumber mosaic virus. Sequence similarity searches revealed several calmodulin-like proteins similar to rgs-CaM (rCML) in Arabidopsis and other Solanaceae plants, including potato (Solanum tuberosum). To analyze the functions of each rCML, mutations were introduced into potato rCMLs using the CRISPR/Cas9 system. Here, we describe our protocol of the CRISPR/Cas9-mediated targeted mutagenesis in stably transformed potato plants.