Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3548, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322067

RESUMO

Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.


Assuntos
Inibidores de Histona Desacetilases , Ácido Tióctico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácido Tióctico/farmacologia , Histona Desacetilases/metabolismo , Antioxidantes/farmacologia
2.
J Med Chem ; 62(9): 4426-4443, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30964290

RESUMO

The discovery of isozyme-selective histone deacetylase (HDAC) inhibitors is critical for understanding the biological functions of individual HDACs and for validating HDACs as drug targets. The isozyme HDAC10 contributes to chemotherapy resistance and has recently been described to be a polyamine deacetylase, but no studies toward selective HDAC10 inhibitors have been published. Using two complementary assays, we found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10. We synthesized Tubastatin A derivatives and found that a basic amine in the cap group was required for strong HDAC10 binding. HDAC10 inhibitors mimicked knockdown by causing dose-dependent accumulation of acidic vesicles in a neuroblastoma cell line. Furthermore, docking into human HDAC10 homology models indicated that a hydrogen bond between a cap group nitrogen and the gatekeeper residue Glu272 was responsible for potent HDAC10 binding. Taken together, our data provide an optimal platform for the development of HDAC10-selective inhibitors, as exemplified with the Tubastatin A scaffold.


Assuntos
Benzamidas/metabolismo , Ácido Glutâmico/química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/química , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA