Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biotechnol Prog ; 37(2): e3105, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274840

RESUMO

Drug development is often hindered by the failure of preclinical models to accurately assess and predict the efficacy and safety of drug candidates. Body-on-a-chip (BOC) microfluidic devices, a subset of microphysiological systems (MPS), are being created to better predict human responses to drugs. Each BOC is designed with separate organ chambers interconnected with microfluidic channels mimicking blood recirculation. Here, we describe the design of the first pumpless, unidirectional, multiorgan system and apply this design concept for testing anticancer drug treatments. HCT-116 colon cancer spheroids, HepG2/C3A hepatocytes, and HL-60 promyeloblasts were embedded in collagen hydrogels and cultured within compartments representing "colon tumor", "liver," and "bone marrow" tissue, respectively. Operating on a pumpless platform, the microfluidic channel design provides unidirectional perfusion at physiologically realistic ratios to multiple channels simultaneously. The metabolism-dependent toxic effect of Tegafur, an oral prodrug of 5-fluorouracil, combined with uracil was examined in each cell type. Tegafur-uracil treatment induced substantial cell death in HCT-116 cells and this cytotoxic response was reduced for multicellular spheroids compared to single cells, likely due to diffusion-limited drug penetration. Additionally, off-target toxicity was detected by HL-60 cells, which demonstrate that such systems can provide useful information on dose-limiting side effects. Collectively, this microscale cell culture analog is a valuable physiologically-based pharmacokinetic drug screening platform that may be used to support cancer drug development.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Fluoruracila/efeitos adversos , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/tratamento farmacológico , Morte Celular , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Hidrogéis/química , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
2.
Biotechnol Bioeng ; 117(2): 486-497, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608985

RESUMO

Efficient and economical delivery of pharmaceuticals to patients is critical for effective therapy. Here we describe a multiorgan (lung, liver, and breast cancer) microphysiological system ("Body-on-a-Chip") designed to mimic both inhalation therapy and/or intravenous therapy using curcumin as a model drug. This system is "pumpless" and self-contained using a rocker platform for fluid (blood surrogate) bidirectional recirculation. Our lung chamber is constructed to maintain an air-liquid interface and contained a "breathable" component that was designed to mimic breathing by simulating gas exchange, contraction and expansion of the "lung" using a reciprocating pump. Three cell lines were used: A549 for the lung, HepG2 C3A for the liver, and MDA MB231 for breast cancer. All cell lines were maintained with high viability (>85%) in the device for at least 48 hr. Curcumin is used to treat breast cancer and this allowed us to compare inhalation delivery versus intravenous delivery of the drug in terms of effectiveness and potentially toxicity. Inhalation therapy could be potentially applied at home by the patient while intravenous therapy would need to be applied in a clinical setting. Inhalation therapy would be more economical and allow more frequent dosing with a potentially lower level of drug. For 24 hr exposure to 2.5 and 25 µM curcumin in the flow device the effect on lung and liver viability was small to insignificant, while there was a significant decrease in viability of the breast cancer (to 69% at 2.5 µM and 51% at 25 µM). Intravenous delivery also selectively decreased breast cancer viability (to 88% at 2.5 µM and 79% at 25 µM) but was less effective than inhalation therapy. The response in the static device controls was significantly reduced from that with recirculation demonstrating the effect of flow. These results demonstrate for the first time the feasibility of constructing a multiorgan microphysiological system with recirculating flow that incorporates a "breathable" lung module that maintains an air-liquid interface.


Assuntos
Dispositivos Lab-On-A-Chip , Pulmão , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Testes de Toxicidade/instrumentação , Ureia/análise , Ureia/metabolismo
3.
Exp Biol Med (Maywood) ; 242(17): 1701-1713, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29065797

RESUMO

Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Modelos Biológicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA