Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aliment Pharmacol Ther ; 51(10): 935-947, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249975

RESUMO

BACKGROUND: Exclusive enteral nutrition (EEN) is an effective treatment for Crohn's disease. AIMS: To investigate the hypothesis that ingredients of EEN formulas are unlikely to initiate a disease flare and that their dietary elimination is not essential for disease amelioration. METHODS: We performed compositional analysis of EEN formulas with evidence of efficacy in management of active Crohn's disease. Macronutrient content was compared against the dietary reference values (DRV), the UK National Diet and Nutrition Survey (NDNS) and intake of Crohn's disease children. Food additives were cross-referenced against the FAO/WHO database. RESULTS: Sixty-one formulas were identified with variable composition (carbohydrates [22.8%-89.3%], protein [7.8%-30.1%], fat [0%-52.5%]). Maltodextrin, milk protein and vegetable/plant oils were the commonest macronutrient sources. Their n-6:n-3 fatty acid ratio varied from 0.25 to 46.5. 56 food additives were identified (median per formula: 11). All formulas were lactose-free, gluten-free, and 82% lacked fibre. The commonest food additives were emulsifiers, stabilisers, antioxidants, acidity regulators and thickeners. Food additives, implicated in Crohn's disease aetiology, were present in formulas (modified starches [100%], carrageenan [22%], carboxymethyl cellulose [13%] and polysorbate 80 [5%]). Remission rates did not differ between EEN formulas with and without those food additives. Analysis including only formulas from randomised controlled trials (RCTs) retained in the latest Cochrane meta-analysis produced similar findings. EEN formulas contained less energy from saturated fat than NDNS intake. CONCLUSION: We have identified food ingredients which are present in EEN formulas that are effective in Crohn's disease and challenge perceptions that these ingredients might be harmful.


Assuntos
Doença de Crohn/terapia , Nutrição Enteral , Alimentos Formulados/análise , Adolescente , Criança , Pré-Escolar , Humanos , Inquéritos Nutricionais , Resultado do Tratamento
2.
Gastroenterology ; 156(5): 1354-1367.e6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30550821

RESUMO

BACKGROUND & AIMS: Exclusive enteral nutrition (EEN) is the only established dietary treatment for Crohn's disease (CD), but its acceptability is limited. There is a need for novel dietary treatments for CD. METHODS: We evaluated the effects of an individualized food-based diet (CD-TREAT), with similar composition to EEN, on the gut microbiome, inflammation, and clinical response in a rat model, healthy adults, and children with relapsing CD. Twenty-five healthy adults randomly received EEN or CD-TREAT for 7 days, followed by a 14-day washout period, followed by the alternate diet. Fecal microbiome and metabolome were assessed before and after each diet. HLA-B7 and HLA-B27 transgenic rats with gut inflammation received EEN, CD-TREAT, or standard chow for 4 weeks. Fecal, luminal, and tissue microbiome, fecal metabolites, and gut inflammation were assessed. Five children with active CD activity received CD-TREAT and their clinical activity and calprotectin were evaluated after 8 weeks of treatment. RESULTS: For healthy adults, CD-TREAT was easier to comply with and more acceptable than EEN. CD-TREAT induced similar effects to EEN (EEN vs CD-TREAT) on fecal microbiome composition, metabolome, mean total sulfide (increase 133.0 ± 80.5 vs 54.3 ± 47.0 nmol/g), pH (increase 1.3 ± 0.5 vs 0.9 ± 0.6), and the short-chain fatty acids (µmol/g) acetate (decrease 27.4 ± 22.6 vs 21.6 ± 20.4), propionate (decrease 5.7 ± 7.8 vs 5.2 ± 7.9), and butyrate (decrease 7.0 ± 7.4 vs 10.2 ± 8.5). In the rat model, CD-TREAT and EEN produced similar changes in bacterial load (decrease 0.3 ± 0.3 log10 16S rRNA gene copies per gram), short-chain fatty acids, microbiome, and ileitis severity (mean histopathology score decreases of 1.25 for EEN [P = .015] and 1.0 for CD-TREAT [P = .044] vs chow). In children receiving CD-TREAT, 4 (80%) had a clinical response and 3 (60%) entered remission, with significant concurrent decreases in fecal calprotectin (mean decrease 918 ± 555 mg/kg; P = .002). CONCLUSION: CD-TREAT replicates EEN changes in the microbiome, decreases gut inflammation, is well tolerated, and is potentially effective in patients with active CD. ClinicalTrials.gov, numbers NCT02426567 and NCT03171246.


Assuntos
Bactérias/crescimento & desenvolvimento , Doença de Crohn/dietoterapia , Nutrição Enteral , Microbioma Gastrointestinal , Valor Nutritivo , Adolescente , Adulto , Animais , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carga Bacteriana , Criança , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Doença de Crohn/fisiopatologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Antígeno HLA-B27/genética , Antígeno HLA-B7/genética , Humanos , Masculino , Estado Nutricional , Ratos Transgênicos , Recidiva , Indução de Remissão , Escócia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
3.
Sci Transl Med ; 10(464)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355800

RESUMO

Macrophages in the healthy intestine are highly specialized and usually respond to the gut microbiota without provoking an inflammatory response. A breakdown in this tolerance leads to inflammatory bowel disease (IBD), but the mechanisms by which intestinal macrophages normally become conditioned to promote microbial tolerance are unclear. Strong epidemiological evidence linking disruption of the gut microbiota by antibiotic use early in life to IBD indicates an important role for the gut microbiota in modulating intestinal immunity. Here, we show that antibiotic use causes intestinal macrophages to become hyperresponsive to bacterial stimulation, producing excess inflammatory cytokines. Re-exposure of antibiotic-treated mice to conventional microbiota induced a long-term, macrophage-dependent increase in inflammatory T helper 1 (TH1) responses in the colon and sustained dysbiosis. The consequences of this dysregulated macrophage activity for T cell function were demonstrated by increased susceptibility to infections requiring TH17 and TH2 responses for clearance (bacterial Citrobacter rodentium and helminth Trichuris muris infections), corresponding with increased inflammation. Short-chain fatty acids (SCFAs) were depleted during antibiotic administration; supplementation of antibiotics with the SCFA butyrate restored the characteristic hyporesponsiveness of intestinal macrophages and prevented T cell dysfunction. Butyrate altered the metabolic behavior of macrophages to increase oxidative phosphorylation and also promoted alternative macrophage activation. In summary, the gut microbiota is essential to maintain macrophage-dependent intestinal immune homeostasis, mediated by SCFA-dependent pathways. Oral antibiotics disrupt this process to promote sustained T cell-mediated dysfunction and increased susceptibility to infections, highlighting important implications of repeated broad-spectrum antibiotic use.


Assuntos
Antibacterianos/farmacologia , Homeostase/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Intestinos/citologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Animais , Butiratos/farmacologia , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Linfócitos T/efeitos dos fármacos , Células Th1/efeitos dos fármacos
4.
Curr Opin Rheumatol ; 28(2): 161-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26814405

RESUMO

PURPOSE OF REVIEW: The microorganisms that colonise our bodies, the commensal 'microbiota', respond to changes in our behaviour and environment, and can also profoundly affect our health. We can now investigate these organisms with unprecedented depth and precision, revealing that they may contribute to the pathogenesis of diseases including arthritis. Here we discuss the changes occurring in the microbiota in people with arthritis, and how manipulation of the microbiota may provide an additional pathway for therapy. RECENT FINDINGS: We highlight two important aspects of the recent literature. First we describe changes in the microbiota identified in people with arthritis; these correlations give insights into the microbial changes that may contribute to symptoms of arthritis. We then discuss attempts to ameliorate arthritis by manipulating the microbiota. This is a rapidly developing area of research. There are tantalising hints that interventions targeting the microbiota may become therapeutically viable for some types of inflammatory arthritis. SUMMARY: Our commensal microbial communities respond to changes in our health, and are altered in people with arthritis. Understanding the complex relationships between the microbiota and the body may enable us to deliberately manipulate these organisms and provide additional therapeutic options for people with arthritis.


Assuntos
Artrite/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Artrite/terapia , Artrite Experimental/microbiologia , Disbiose/complicações , Trato Gastrointestinal/microbiologia , Humanos , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA