Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 48(4): 421-425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38339848

RESUMO

The annual conference of the International Functional Electrical Stimulation Society (IFESS) was held in conjunction with the 7th RehabWeek Congress, from September 24 to 28, 2023 at the Resorts World Convention Centre on Sentosa Island, in Singapore. The Congress was a joint meeting of the International Consortium on Rehabilitation Technology (ICRT) together with 10 other societies in the field of assistive technology and rehabilitation engineering. The conference features comprehensive blend of technical and clinical context of FES, a sustained value the society has offered over many years. The cross- and inter- disciplinary approach of medicine, engineering, and science practiced in the FES community had enabled vibrant interaction, creation, and development of impactful and novel contributions to the field of FES, translating FES directly into highly relevant and sustainable solutions for the users.


Assuntos
Terapia por Estimulação Elétrica , Sociedades Médicas , Estimulação Elétrica
3.
Artigo em Inglês | MEDLINE | ID: mdl-35709114

RESUMO

Functional electrical stimulation (FES) can be used to initiate lower limb muscle contractions and has been widely applied in gait rehabilitation. Establishing the correct timing of FES activation during each phase of the gait (walking) cycle remains challenging as most FES systems rely on open-loop control, whereby the controller receives no feedback about joint kinematics and instead relies on predetermined/timed muscle stimulation. The objective of this study was to develop and validate a closed-loop FES-based control solution for gait rehabilitation using a finite state machine (FSM) model. A two-phased study approach was taken: (1) Experimentally-Informed Study: A neuromuscular-derived FSM model was developed to drive closed-loop FES-based control for gait rehabilitation. The finite states were determined using electromyography and joint kinematics data of 12 non-disabled adults, collected during treadmill walking. The gait cycles were divided into four states, namely: swing-to-stance, push off, pre-swing, and toe up. (2) Simulation Study: A closed-loop FES-based control solution that employed the resulting FSM model, was validated through comparisons of neuro-musculo-skeletal computer simulations of impaired versus healthy gait. This closed-loop controller yielded steadier simulated impaired gait, in comparison to an open-loop alternative. The simulation results confirmed that accurate timing of FES activation during the gait cycle, as informed by kinematics data, is important to natural gait retraining. The closed-loop FES-based solution, introduced in this study, contributes to the repository of gait rehabilitation control options and offers the advantage of being simplistic to implement. Furthermore, this control solution is expected to integrate well with powered exoskeleton technologies.


Assuntos
Terapia por Estimulação Elétrica , Adulto , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Eletromiografia , Marcha/fisiologia , Humanos , Caminhada/fisiologia
4.
Biomed Eng Online ; 19(1): 81, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148270

RESUMO

Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.


Assuntos
Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/métodos , Músculos , Sistema Nervoso , Próteses e Implantes , Reabilitação/métodos , Humanos
5.
Exp Brain Res ; 237(12): 3195-3205, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31602493

RESUMO

It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.


Assuntos
Extremidade Inferior/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Extremidade Superior/fisiologia , Adulto , Estimulação Elétrica , Humanos , Masculino , Nervo Mediano/fisiologia , Estimulação da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Adulto Jovem
6.
J Electromyogr Kinesiol ; 26: 94-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26746011

RESUMO

Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information.


Assuntos
Antecipação Psicológica/fisiologia , Postura/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia , Tronco/fisiologia , Estimulação Acústica/métodos , Adulto , Eletromiografia/métodos , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA