Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 3(1): 577, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067560

RESUMO

Neuromodulation is a new therapeutic pathway to treat inflammatory conditions by modulating the electrical signalling pattern of the autonomic connections to the spleen. However, targeting this sub-division of the nervous system presents specific challenges in translating nerve stimulation parameters. Firstly, autonomic nerves are typically embedded non-uniformly among visceral and connective tissues with complex interfacing requirements. Secondly, these nerves contain axons with populations of varying phenotypes leading to complexities for axon engagement and activation. Thirdly, clinical translational of methodologies attained using preclinical animal models are limited due to heterogeneity of the intra- and inter-species comparative anatomy and physiology. Here we demonstrate how this can be accomplished by the use of in silico modelling of target anatomy, and validation of these estimations through ex vivo human tissue electrophysiology studies. Neuroelectrical models are developed to address the challenges in translation of parameters, which provides strong input criteria for device design and dose selection prior to a first-in-human trial.


Assuntos
Estimulação Elétrica , Baço/inervação , Animais , Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/métodos , Fenômenos Eletrofisiológicos , Humanos , Baço/anatomia & histologia , Baço/irrigação sanguínea , Baço/citologia , Suínos
2.
Front Neurol ; 6: 77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904892

RESUMO

High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs.

3.
PLoS One ; 9(8): e106108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157947

RESUMO

Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain.


Assuntos
Analgésicos Opioides/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Artralgia/tratamento farmacológico , Articulação do Joelho/patologia , Naproxeno/uso terapêutico , Oxicodona/uso terapêutico , Potenciais de Ação , Analgésicos Opioides/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Masculino , Naproxeno/farmacocinética , Oxicodona/farmacocinética , Percepção da Dor , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/fisiopatologia
4.
Hear Res ; 252(1-2): 79-88, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19371774

RESUMO

Reproductive hormones can modulate communication-evoked behavior by acting on neural systems associated with motivation; however, recent evidence suggests that modulation occurs at the sensory processing level as well. The anuran auditory midbrain processes communication stimuli, and is sensitive to steroid hormones. Using multiunit electrophysiology, we tested whether sex and circulating testosterone influence auditory sensitivity to pure tones and to the natural vocalization in the green treefrog, Hyla cinerea. Sex did not influence audiogram best frequencies although sexes did differ in the sensitivities at those frequencies with males more sensitive in the lower frequency range. Females were more sensitive than males in response to the natural vocalization, despite showing no difference in response to pure tones at frequencies found within the advertisement call. Thresholds to frequencies outside the range of the male advertisement call were higher in females. Additionally, circulating testosterone increased neural thresholds in females in a frequency-specific manner. These results demonstrate that sex differences are limited to frequency ranges that relate to the processing of natural vocalizations, and depend on the type of stimulus. The frequency-dependent and stimulus-dependent nature of sex and testosterone influences suggests that reproductive hormones influence the filtering properties of the auditory system.


Assuntos
Androgênios/fisiologia , Anuros/fisiologia , Limiar Auditivo/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Limiar Auditivo/efeitos dos fármacos , Comportamento Animal/fisiologia , Feminino , Masculino , Mesencéfalo/fisiologia , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/fisiologia , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA