Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290639

RESUMO

Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.

2.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577029

RESUMO

Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.


Assuntos
Bacillus subtilis , Nanopartículas , Selênio , Antioxidantes , Suplementos Nutricionais , Tamanho da Partícula
3.
J Food Biochem ; 44(6): e13227, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282084

RESUMO

The main aim of this work was to screen, isolate, and identify a probiotic selenium (Se)-resistant strain of Bacillus subtilis, using the 16S rDNA sequencing approach and subsequently optimize conditions. Initially, conditions were enhanced in two univariate optimization environments: shakings flask and a bioreactor. After solving optimization for selected variables, conditions were further optimized using orthogonal array testing. The results were further evaluated by the analysis of variance, in support of Se enrichment. In a bioreactor, based on R and F values, the order of effect of selected conditions on Se enrichment was stirring speed > initial pH > temperature > Se addition time. The stirring speed of the bioreactor was most significant, due to the suspension of reduced Se, as it formed. After absolute optimization, strain BSN313 was able to enrich Se up to 2,123 µg/g of dry weight, which is 7.58 times greater than the baseline Se-resistance. PRACTICAL APPLICATIONS: Systematic studies of selenium enrichment conditions will facilitate the successful development of an organic selenium source and the safe use of Bacillus subtilis strain (BSN313) as a food supplement. Selenium-enriched probiotic bacteria are reported to provide many health benefits to the host, due to antipathogenic, antioxidative, anticarcinogenic, antimutagenic, and anti-inflammatory activities.


Assuntos
Probióticos , Selênio , Antioxidantes , Bacillus subtilis , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA