Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1249-1261, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218012

RESUMO

Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.


Assuntos
Hordeum , Grão Comestível , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
3.
New Phytol ; 225(3): 1383-1396, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31550387

RESUMO

Nodulin 26-like intrinsic proteins (NIPs) play essential roles in transporting the nutrients silicon and boron in seed plants, but the evolutionary origin of this transport function and the co-permeability to toxic arsenic remains enigmatic. Horizontal gene transfer of a yet uncharacterised bacterial AqpN-aquaporin group was the starting-point for plant NIP evolution. We combined intense sequence, phylogenetic and genetic context analyses and a mutational approach with various transport assays in oocytes and plants to resolve the transorganismal and functional evolution of bacterial and algal and terrestrial plant NIPs and to reveal their molecular transport specificity features. We discovered that aqpN genes are prevalently located in arsenic resistance operons of various prokaryotic phyla. We provided genetic and functional evidence that these proteins contribute to the arsenic detoxification machinery. We identified NIPs with the ancestral bacterial AqpN selectivity filter composition in algae, liverworts, moss, hornworts and ferns and demonstrated that these archetype plant NIPs and their prokaryotic progenitors are almost impermeable to water and silicon but transport arsenic and boron. With a mutational approach, we demonstrated that during evolution, ancestral NIP selectivity shifted to allow subfunctionalisations. Together, our data provided evidence that evolution converted bacterial arsenic efflux channels into essential seed plant nutrient transporters.


Assuntos
Arsênio/metabolismo , Evolução Molecular , Proteínas de Membrana/genética , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Animais , Aquaporinas/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Transporte Biológico , Ácidos Bóricos/metabolismo , Boro/metabolismo , Briófitas/metabolismo , Membrana Celular/metabolismo , Difusão , Metaloides/metabolismo , Mutação/genética , Oócitos/metabolismo , Fenótipo , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Ácido Silícico/metabolismo , Água/metabolismo , Xenopus/metabolismo
4.
Mol Plant ; 13(1): 99-111, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31610248

RESUMO

During plant growth and development mineral elements are preferentially delivered to different organs and tissues to meet the differential demand. It has been shown that the preferential distribution of mineral nutrients in gramineous plants is mediated by node-based transporters, but the mechanisms of preferential distribution in dicots are poorly understood. Here, we report a distinct mechanism for the preferential distribution of phosphorus (P) in Arabidopsis plants, revealed by detailed functional analysis of AtSPDT/AtSULTR3;4 (SULTR-like P Distribution Transporter), a homolog of rice OsSPDT. Like OsSPDT, AtSPDT is localized at the plasma membrane and showed proton-dependent transport activity for P. Interestingly, we found that AtSPDT is mainly expressed in the rosette basal region and leaf petiole, and its expression is up-regulated by P deficiency. Tissue-specific analysis showed that AtSPDT is mainly located in the vascular cambium of different organs, as well as in the parenchyma tissues of both xylem and phloem regions. Knockout of AtSPDT inhibited the growth of new leaves under low P due to decreased P distribution to those organs. The seed yields of the wild-type and atspdt mutant plants are similar, but the seeds of mutant plants contain - less P. These results indicate that AtSPDT localized in the vascular cambium is involved in preferential distribution of P to the developing tissues, through xylem-to-phloem transfer mainly at the rosette basal region and leaf petiole.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo/metabolismo , Feixe Vascular de Plantas/fisiologia , Transportadores de Sulfato/genética , Simportadores/genética , Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
5.
Nature ; 541(7635): 92-95, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002408

RESUMO

Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year. However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged- and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.


Assuntos
Agricultura/métodos , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/metabolismo , Oryza/anatomia & histologia , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Animais , Transporte Biológico , Grão Comestível/metabolismo , Eutrofização , Fertilizantes , Técnicas de Inativação de Genes , Germinação , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Especificidade de Órgãos , Oryza/genética , Oryza/crescimento & desenvolvimento , Ácido Fítico/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plântula/crescimento & desenvolvimento , Xilema/metabolismo
6.
Plant Cell Physiol ; 57(6): 1169-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27053033

RESUMO

Buckwheat (Fagopyrum esculentum Moench) is able to detoxify aluminum (Al) both externally and internally, but the molecular mechanisms underlying its high Al tolerance are not understood. We functionally characterized a gene (FeIREG1) belonging to IRON REGULATED/ferroportin in buckwheat, which showed high expression in our previous genome-wide transcriptome analysis. FeIREG1 was mainly expressed in the roots, and its expression was up-regulated by Al, but not by other metals and low pH. Furthermore, in contrast to AtIREG1 and AtIREG2 in Arabidopsis, the expression of FeIREG1 was not induced by Fe deficiency. Spatial expression analysis showed that the Al-induced expression of FeIREG1 was found in the root tips and higher expression was detected in the outer layers of this part. Immunostaining also showed that FeIREG1 was localized at the outer cell layers in the root tip. A FeIREG1-green fluorescent protein (GFP) fusion protein was localized to the tonoplast when transiently expressed in onion epidermal cells. Overexpression of FeIREG1 in Arabidopsis resulted in increased Al tolerance, but did not alter the tolerance to Cd, Co and Fe. The tolerance to Ni was slightly enhanced in the overexpression lines. Mineral analysis showed that the accumulation of total root Al and other essential mineral elements was hardly altered in the overexpression lines. Taken together, our results suggest that FeIREG1 localized at the tonoplast plays an important role in internal Al detoxification by sequestering Al into the root vacuoles in buckwheat.


Assuntos
Alumínio/metabolismo , Alumínio/toxicidade , Fagopyrum/genética , Genes de Plantas , Proteínas de Plantas/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Fagopyrum/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(36): 11401-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26283388

RESUMO

Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo , Silício/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/genética , Feminino , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Cebolas/citologia , Oócitos/metabolismo , Oryza/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xenopus , Xilema/citologia , Xilema/genética , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA