Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Signal Behav ; 17(1): 2148372, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36416182

RESUMO

Plant-parasitic cyst nematodes (Heterodera and Globodera spp.) secrete CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) effector proteins, which act as ligand mimics of plant CLE peptides to promote successful nematode infection. Previous studies of the Arabidopsis-beet cyst nematode (BCN; H. schachtii) pathosystem showed that Arabidopsis CLE receptors including CLAVATA1 (CLV1), CLV2, and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) are required for BCN CLE signaling. Studies further revealed that nematode CLE signaling through GmCLV2 and StCLV2, an Arabidopsis CLV2 orthologue from soybean (Glycines max) and potato (Solanum tuberosum), respectively, is required for the soybean cyst nematode (SCN; H. glycines) and the potato cyst nematode (PCN; G. rostochiensis) to induce disease in their respective host plant. In this study, we identified and characterized two additional potato receptors, StRPK2 and StCLV1, homologues of Arabidopsis RPK2 and CLV1, for a role in PCN parasitism. Using promoter-reporter lines we showed that both StRPK2 and StCLV1 are expressed in the potato root but vary in their spatial expression patterns. Interestingly, StRPK2 but not StCLV1 was found to be expressed and upregulated at PCN infection sites. Nematode infection assays on StRPK2-knockdown lines revealed a decrease in nematode infection. Collectively, our results suggest that parallel CLE signaling pathways involving StCLV2 and StRPK2 are important for PCN parasitism and that manipulation of nematode CLE signaling may represent a viable means to engineer nematode resistance in crop plants including potato.


Assuntos
Arabidopsis , Fabaceae , Infecções por Nematoides , Solanum tuberosum , Tylenchoidea , Animais , Arabidopsis/genética , Solanum tuberosum/genética , Glycine max
2.
Mol Plant Pathol ; 23(12): 1765-1782, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069343

RESUMO

Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Beta vulgaris , Cistos , Tylenchoidea , Animais , Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/genética , Tylenchoidea/metabolismo , Açúcares/metabolismo , Raízes de Plantas/parasitologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases
3.
PLoS One ; 13(3): e0193881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29509804

RESUMO

The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.


Assuntos
Nematoides/virologia , Plantas/parasitologia , Vírus de RNA , Animais , Beta vulgaris/parasitologia , Perfilação da Expressão Gênica , Genoma Viral/genética , Medicago/parasitologia , Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/parasitologia , Glycine max/parasitologia
4.
Mol Plant Pathol ; 17(6): 832-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575318

RESUMO

Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 ß subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii.


Assuntos
Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Beta vulgaris , Citoplasma/metabolismo , DNA Bacteriano/genética , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Helminto/química , Hibridização In Situ , Mutagênese Insercional/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Ligação Proteica , Reprodutibilidade dos Testes , Alinhamento de Sequência
5.
Plant Cell ; 27(3): 891-907, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25715285

RESUMO

Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/parasitologia , Núcleo Celular/metabolismo , Interações Hospedeiro-Parasita , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/parasitologia , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Sinais de Localização Nuclear , Fosforilação , Fosfosserina/metabolismo , Doenças das Plantas/parasitologia , Proteínas Quinases/metabolismo , Transporte Proteico , Regulação para Cima
6.
Plant Physiol ; 167(1): 262-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416475

RESUMO

Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants.


Assuntos
Nematoides/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/fisiologia , Animais , Glicopeptídeos/fisiologia , Glicosilação , Transdução de Sinais/fisiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitologia
7.
Mol Plant Microbe Interact ; 26(1): 87-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22835273

RESUMO

Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (CLE)-like effector proteins. These proteins act as ligand mimics of plant CLE peptides and are required for successful nematode infection. Previously, we showed that the CLV2/CORYNE (CRN) heterodimer receptor complex is required for nematode CLE signaling. However, there was only a partial reduction in nematode infection when this signaling was disrupted, indicating that there might be additional nematode CLE receptors. In this study, we demonstrate that CLV1 and RECEPTOR-LIKE PROTEIN KINASE 2/TOADSTOOL2 (RPK2), two additional receptors that can transmit the CLV3 signal independent of CLV2/CRN for shoot apical meristem maintenance, also play a role in nematode CLE perception. Localization studies showed that both receptors are expressed in nematode-induced syncytia. Infection assays with clv1 and rpk2 single mutants revealed a decrease in both nematode infection and syncytium size. Significantly, further reduction in nematode infection was observed when rpk2 was combined with clv1 and clv2 mutants. Taken together, our results indicate that parallel signaling pathways involving CLV1, CLV2, and RPK2 are important for nematode parasitism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Alelos , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Beta vulgaris/parasitologia , Feminino , Regulação da Expressão Gênica , Genótipo , Interações Hospedeiro-Parasita , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Folhas de Planta , Raízes de Plantas/citologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Plântula/citologia , Plântula/parasitologia , Transdução de Sinais , Tylenchoidea/citologia
8.
J Exp Bot ; 61(1): 235-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19887499

RESUMO

Nematode parasitism genes encode secreted effector proteins that play a role in host infection. A homologue of the expressed Hg4F01 gene of the root-parasitic soybean cyst nematode, Heterodera glycines, encoding an annexin-like effector, was isolated in the related Heterodera schachtii to facilitate use of Arabidopsis thaliana as a model host. Hs4F01 and its protein product were exclusively expressed within the dorsal oesophageal gland secretory cell in the parasitic stages of H. schachtii. Hs4F01 had a 41% predicted amino acid sequence identity to the nex-1 annexin of C. elegans and 33% identity to annexin-1 (annAt1) of Arabidopsis, it contained four conserved domains typical of the annexin family of calcium and phospholipid binding proteins, and it had a predicted signal peptide for secretion that was present in nematode annexins of only Heterodera spp. Constitutive expression of Hs4F01 in wild-type Arabidopsis promoted hyper-susceptibility to H. schachtii infection. Complementation of an AnnAt1 mutant by constitutive expression of Hs4F01 reverted mutant sensitivity to 75 mM NaCl, suggesting a similar function of the Hs4F01 annexin-like effector in the stress response by plant cells. Yeast two-hybrid assays confirmed a specific interaction between Hs4F01 and an Arabidopsis oxidoreductase member of the 2OG-Fe(II) oxygenase family, a type of plant enzyme demonstrated to promote susceptibility to oomycete pathogens. RNA interference assays that expressed double-stranded RNA complementary to Hs4F01 in transgenic Arabidopsis specifically decreased parasitic nematode Hs4F01 transcript levels and significantly reduced nematode infection levels. The combined data suggest that nematode secretion of an Hs4F01 annexin-like effector into host root cells may mimic plant annexin function during the parasitic interaction.


Assuntos
Anexinas/metabolismo , Arabidopsis/parasitologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Nematoides/metabolismo , Sequência de Aminoácidos , Animais , Anexinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Helmintos/metabolismo , Genes de Helmintos , Teste de Complementação Genética , Genoma/genética , Proteínas de Helminto/química , Dados de Sequência Molecular , Mutação/genética , Nematoides/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Interferência de RNA , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
9.
Mol Plant Microbe Interact ; 22(9): 1128-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19656047

RESUMO

Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.


Assuntos
Genes de Helmintos , Variação Genética , Proteínas de Plantas/genética , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Estágios do Ciclo de Vida , Meristema/crescimento & desenvolvimento , Meristema/parasitologia , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Peptídeos/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/parasitologia , Alinhamento de Sequência , Tylenchoidea/crescimento & desenvolvimento , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA