Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(1): 154-161, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31461269

RESUMO

Despite the recent advances in the life sciences and the remarkable investment in drug discovery research, the success rate of small-molecule drug development remains low. Safety is the second most influential factor of drug attrition in clinical studies; thus, the selection of compounds with fewer toxicity concerns is crucial to increase the success rate of drug discovery. Compounds that promiscuously bind to multiple targets are likely to cause unexpected pharmacological activity that may lead to adverse effects. Therefore, avoiding such compounds during early research stages would contribute to identifying compounds with a higher chance of success in the clinic. To evaluate the interaction profile against a wide variety of targets, we constructed a small-scale promiscuity panel (PP) consisting of eight targets (ROCK1, PDE4D2, GR, PPARγ, 5-HT2B, adenosine A3, M1, and GABAA) that were selected from diverse gene families. The validity of this panel was confirmed by comparison with the promiscuity index evaluated from larger-scale panels. Analysis of data from the PP revealed that both lipophilicity and basicity are likely to increase promiscuity, while the molecular weight does not significantly contribute. Additionally, the promiscuity assessed using our PP correlated with the occurrence of both in vitro cytotoxicity and in vivo toxicity, suggesting that the PP is useful to identify compounds with fewer toxicity concerns. In summary, this small-scale and cost-effective PP can contribute to the identification of safer compounds that would lead to a reduction in drug attrition due to safety issues.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Sobrevivência Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Células Hep G2 , Humanos , Camundongos , PPAR gama/genética , Ratos , Receptor A3 de Adenosina/genética , Receptor Muscarínico M1/genética , Receptor 5-HT2B de Serotonina/genética , Receptores de GABA-A/genética , Receptores de Glucocorticoides/genética , Quinases Associadas a rho/genética
2.
Pharmacol Res Perspect ; 7(5): e00517, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31508234

RESUMO

Enteropeptidase, localized into the duodenum brush border, is a key enzyme catalyzing the conversion of pancreatic trypsinogen proenzyme to active trypsin, thereby regulating protein digestion and energy homeostasis. We report the discovery and pharmacological profiles of SCO-792, a novel inhibitor of enteropeptidase. A screen employing fluorescence resonance energy transfer was performed to identify enteropeptidase inhibitors. Inhibitory profiles were determined by in vitro assays. To evaluate the in vivo inhibitory effect on protein digestion, an oral protein challenge test was performed in rats. Our screen identified a series of enteropeptidase inhibitors, and compound optimization resulted in identification of SCO-792, which inhibited enteropeptidase activity in vitro, with IC 50 values of 4.6 and 5.4 nmol/L in rats and humans, respectively. In vitro inhibition of enteropeptidase by SCO-792 was potentiated by increased incubation time, and the calculated Kinact/KI was 82 000/mol/L s. An in vitro dissociation assay showed that SCO-792 had a dissociation half-life of almost 14 hour, with a calculated koff rate of 0.047/hour, which suggested that SCO-792 is a reversible enteropeptidase inhibitor. In normal rats, a ≤4 hour prior oral dose of SCO-792 effectively inhibited plasma elevation of branched-chain amino acids in an oral protein challenge test, which indicated that SCO-792 effectively inhibited protein digestion in vivo. In conclusion, our new screen system identified SCO-792 as a potent and reversible inhibitor against enteropeptidase. SCO-792 slowly dissociated from enteropeptidase in vitro and inhibited protein digestion in vivo. Further study using SCO-792 could reveal the effects of inhibiting enteropeptidase on biological actions.


Assuntos
Enteropeptidase/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Bibliotecas de Moléculas Pequenas/administração & dosagem , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Bioorg Med Chem Lett ; 29(21): 126641, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31526603

RESUMO

Selectivity profiling of compounds is important for kinase drug discovery. To this end, we aimed to develop a broad-range protein kinase assay by synthesizing a novel staurosporine-derived fluorescent probe based on staurosporine and kinase-binding related structural information. Upon structural analysis of staurosporine with kinases, a 4'-methylamine moiety of staurosporine was found to be located on the solvent side of the kinases, to which several linker units can be conjugated by either alkylation or acylation. However, such conjugation was suggested to reduce the binding affinities of the modified compound for several kinases, owing to the elimination of hydrogen bond donor moiety of NH-group from 4'-methylamine and/or steric hindrance by acyl moiety. Based on this structural information, we designed and synthesized a novel staurosporine-based probe without methyl group in order to retain the hydrogen bond donor, similar to unmodified staurosporine. The broad range of the kinase binding assay demonstrated that our novel fluorescent probe is an excellent tool for developing broad-ranging kinase binding assay.


Assuntos
Corantes Fluorescentes/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estaurosporina/química , Sítios de Ligação , Ligação Competitiva , Técnicas Biossensoriais , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Ligação de Hidrogênio , Metilaminas/química , Estrutura Molecular , Ligação Proteica , Sensibilidade e Especificidade , Estaurosporina/síntese química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 25(14): 3768-3779, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571972

RESUMO

A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/síntese química , Oxidiazóis/síntese química , Piridazinas/síntese química , Estearoil-CoA Dessaturase/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células HCT116 , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/metabolismo , Oxidiazóis/farmacocinética , Oxidiazóis/uso terapêutico , Oxidiazóis/toxicidade , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacologia , Ligação Proteica , Piridazinas/farmacocinética , Piridazinas/uso terapêutico , Piridazinas/toxicidade , Compostos de Espiro/química , Estearoil-CoA Dessaturase/metabolismo , Relação Estrutura-Atividade , Transplante Heterólogo
5.
Appl Microbiol Biotechnol ; 73(5): 1143-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16960736

RESUMO

For production of genistein from N-acetylcysteamine-attached p-coumarate (p-coumaroyl-NAC) supplemented to the medium, a chalcone synthase (CHS) gene from Glycyrrhiza echinata, a chalcone isomerase (CHI) gene from Pueraria lobata, and an isoflavone synthase (IFS) gene from G. echinata were placed under the control of the galactose-inducible GAL promoters in pESC vector and were introduced in Saccharomyces cerevisiae. When the recombinant yeast cells (0.5 g wet weight) were used as "enzyme bags" and incubated at 30 degrees C for 48 h in 100 ml of the buffer containing galactose and 1 mM (265 mg/l) p-coumaroyl-NAC, ca. 340 microg genistein/l was produced. Another system consisting of two enzyme bags was also generated for the purpose of production of genistein from tyrosine. One enzyme bag was an Escherichia coli cell containing a phenylalanine ammonia-lyase gene from a yeast, a 4-coumarate/cinnamate:CoA ligase gene from the actinomycete Streptomyces coelicolor A3(2), the CHS gene, and the CHI gene, in addition to the acetyl-CoA carboxylase gene from Corynebacterium glutamicum, all of which were under the control of the isopropyl-beta-D-thiogalactopyranoside-inducible T7 promoter, and thus producing (S)-naringenin from tyrosine. The other enzyme bag was a S. cerevisiae cell containing the IFS gene. Coincubation of the E. coli cells (0.5 g wet weight) and S. cerevisiae cells (0.5 g wet weight) at 26 degrees C for 60 h in 20 ml of the buffer containing 3 mM (543 mg/l) tyrosine as the starting substrate yielded ca. 6 mg genistein/l.


Assuntos
Escherichia coli/metabolismo , Genisteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Acetil-CoA Carboxilase/genética , Aciltransferases/genética , Clonagem Molecular , Coenzima A Ligases/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Flavanonas/biossíntese , Expressão Gênica , Glycyrrhiza/enzimologia , Glycyrrhiza/genética , Liases Intramoleculares/genética , Isopropiltiogalactosídeo/análogos & derivados , Isopropiltiogalactosídeo/farmacologia , Oxigenases/genética , Fenilalanina Amônia-Liase/genética , Regiões Promotoras Genéticas , Propionatos , Pueraria/enzimologia , Pueraria/genética , Saccharomyces cerevisiae/genética , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA