Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298806

RESUMO

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Assuntos
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animais , Camundongos , Glicosídeos/farmacologia , Glicosídeos/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacologia , Triterpenos/química
2.
Nutrients ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889842

RESUMO

Although many natural products have proven their potential to regulate obesity through the modulation of adipocyte biology, none of them has yet been approved for clinical use in obesity therapy. This work aims to isolate valuable secondary metabolites from an orchid species (Dendrobium heterocarpum) and evaluate their possible roles in the growth and differentiation of 3T3-L1 pre-adipocytes. Six compounds were isolated from the orchid's methanolic extracts and identified as amoenylin (1), methyl 3-(4-hydroxyphenyl) propionate (2), 3,4-dihydroxy-5,4'-dimethoxybibenzyl (3), dendrocandin B (4), dendrofalconerol A (5), and syringaresinol (6). Among these phytochemicals, compounds 2, 3, and 6 exhibited lower effects on the viability of 3T3-L1 cells, offering non-cytotoxic concentrations of ≲10 µM. Compared to others tested, compound 3 was responsible for the maximum reduction of lipid storage in 3T3-L1 adipocytes (IC50 = 6.30 ± 0.10 µM). A set of protein expression studies unveiled that compound 3 at non-cytotoxic doses could suppress the expression of some key transcription factors in adipocyte differentiation (i.e., PPARγ and C/EBPα). Furthermore, this compound could deactivate some proteins involved in the MAPK pathways (i.e., JNK, ERK, and p38). Our findings prove that D. heterocarpum is a promising source to explore bioactive molecules capable of modulating adipocytic growth and development, which can potentially be assessed and innovated further as pharmaceutical products to defeat obesity.


Assuntos
Dendrobium , Células 3T3-L1 , Adipócitos , Adipogenia , Animais , Diferenciação Celular , Dendrobium/metabolismo , Lipídeos/farmacologia , Metanol/farmacologia , Camundongos , Obesidade/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/química
3.
Fitoterapia ; 159: 105193, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427753

RESUMO

Seven previously undescribed oleanane-type glycosides were isolated from the trunk barks of a Central African tree named Millettia laurentii De Wild (Fabaceae). After the extraction from the barks, the isolation and purification of these compounds were achieved using various solid/liquid chromatographic methods. Their structures were established mainly by 1D and 2D NMR (COSY, TOCSY, ROESY, HSQC, HMBC) and mass spectrometry (ESI-MS), as 3-O-ß-D-glucuronopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosylechinocystic acid, 3-O-ß-D-apiofuranosyl-(1 â†’ 3)-ß-D-glucuronopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosylechinocystic acid, 3-O-ß-D-apiofuranosyl-(1 â†’ 3)-ß-D-galactopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosylechinocystic acid, 3-O-ß-D-apiofuranosyl-(1 â†’ 3)-[ß-d-xylopyranosyl-(1 â†’ 2)]-ß-D-galactopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosylechinocystic acid, 3-O-ß-D-apiofuranosyl-(1 â†’ 3)-[α-L-arabinofuranosyl-(1 â†’ 2)]-ß-D-galactopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosylechinocystic acid, 3-O-α-L-arabinofuranosyl-(1 â†’ 2)-ß-D-galactopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosyloleanolic acid, 3-O-ß-D-apiofuranosyl-(1 â†’ 3)-[α-L-arabinofuranosyl-(1 â†’ 2)]-ß-D-galactopyranosyl-(1 â†’ 2)-ß-D-glucuronopyranosyloleanolic acid. In addition, the cytotoxicity of six glycosides among the isolated ones, was evaluated against 4 T1 cell line from a mouse mammary gland tissue, using MTS method.


Assuntos
Millettia , Saponinas , Animais , Glicosídeos/química , Camundongos , Estrutura Molecular , Ácido Oleanólico/análogos & derivados , Saponinas/química , Árvores
4.
Nat Prod Res ; 36(19): 4949-4956, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33939575

RESUMO

The polar fraction of the MeOH extract of the roots of Corrigiola litoralis subsp. telephiifolia (Pourr.) Briq. (Caryophyllaceae) was investigated for its constituents and two previously unreported monodesmosides triterpene saponins, telephiifoliosides A and B (1 and 2), along with the known bonushenricoside A (3) were isolated. Their structures were elucidated by combined spectroscopic and spectrometric techniques (1H NMR, 13C NMR, HSQC, 1H-1H COSY, HMBC, TOCSY, NOESY, HRESIMS) and chemical methods. The structures of the new saponins were established as; 3-O-α-L-arabinopyranosyljaligonic acid (1), and 3-O-α-L-arabinopyranosylphytolaccagenin ester (2). Upon evaluation of the antiproliferative activity on human malignant epithelial (HeLa) cells, none of the isolated compounds was efficient at the concentration of 33 µM. [Formula: see text]HighlightsThis is the first phytochemical study on Corrigiola litoralis subsp. telephiifolia.Two new saponins were isolated from the roots of Corrigiola litoralis subsp. telephiifolia.The isolated compounds were tested for their antiproliferative activity.


Assuntos
Caryophyllaceae , Saponinas , Triterpenos , Caryophyllaceae/química , Ésteres/análise , Humanos , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Saponinas/química , Triterpenos/química
5.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833898

RESUMO

Four oleanane-type glycosides were isolated from a horticultural cultivar "Green Elf" of the endemic Pittosporum tenuifolium (Pittosporaceae) from New Zealand: three acylated barringtogenol C glycosides from the leaves, with two previously undescribed 3-O-ß-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-ß-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, 3-O-ß-d-galactopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-ß-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, and the known 3-O-ß-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-ß-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C (Eryngioside L). From the roots, the known 3-O-ß-d-glucopyranosyl-(1→2)-ß-d-galactopyranosyl-(1→2)-ß-d-glucuronopyranosyloleanolic acid (Sandrosaponin X) was identified. Their structures were elucidated by spectroscopic methods including 1D- and 2D-NMR experiments and mass spectrometry (ESI-MS). According to their structural similarities with gymnemic acids, the inhibitory activities on the sweet taste TAS1R2/TAS1R3 receptor of an aqueous ethanolic extract of the leaves and roots, a crude saponin mixture, 3-O-ß-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-ß-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, and Eryngioside L were evaluated.


Assuntos
Rosales/química , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nova Zelândia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Plantas Medicinais/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Saponinas/química , Saponinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Triterpenos/química , Triterpenos/farmacologia
6.
Phytochemistry ; 188: 112797, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34023719

RESUMO

Chytranthus macrobotrys and Radlkofera calodendron are two Sapindaceae characterized by a lack of phytochemical data. Both root barks from the two Sapindaceae species were processed by ethanol extraction followed by the isolation of their primary constituents by liquid chromatography. This process yielded four previously undescribed terpenoid glycosides together with eight known analogues. Extracts and isolated compounds from C. macrobotrys and R. calodendron were then screened for antimicrobial activity against fifteen phytopathogens. The biological screening also involved extracts and pure compounds from Blighia unijugata and Blighia welwitschii, two Sapindaceae previously studied by our group. Phytopathogens were chosen based on their economic impact on agriculture worldwide. The selection was composed primarily of fungal species including; Pyricularia oryzae, Gaeumannomyces graminis var. tritici, Zymoseptoria tritici, Fusarium oxysporum, Botrytis cinerea, Pythium spp., Trichoderma spp. and Rhizoctonia solani. Furthermore, pure terpenoid glycosides were tested for the first time against wood-inhabiting phytopathogens such as; Phaeomoniella chlamydospora, Phaeoacremonium minimum, Fomitiporia mediterranea, Eutype lata and Xylella fastidiosa. Raw extracts exhibited different levels of activity dependent on the organism. Some pure compounds, including 3-O-α-L-arabinopyranosyl-(1 â†’ 4)-ß-D-xylopyranosyl-(1 â†’ 3)-α-L-rhamnopyranosyl-(1 â†’ 2)-α-L-arabinopyranosylhederagenin, 3-O-α-L-rhamnopyranosyl-(1 â†’ 2)-α-L-arabinopyranosylhederagenin (α-hederin), 3-O-ß-D-glucopyranosyl-(1 â†’ 3)-α-L-rhamnopyranosyl-(1 â†’ 2)-α-L-arabinopyranosylhederagenin (macranthoside A) and 3-O-α-L-arabinopyranosyl-(1 â†’ 3)-α-L-rhamnopyranosyl-(1 â†’ 2)-α-L-arabinopyranosylhederagenin (clemontanoside C), exhibited significant growth inhibitions on Pyricularia oryzae, Gaeumannomyces graminis var. tritici, Fomitiporia mediterranea and Zymoseptoria tritici. Monodesmoside triterpene saponins, in particular, exhibited MIC (IC100) values as low as 25 µg/ml and IC50 values as low as 10 µg/ml against these phytopathogens. Structure-activity relationships, as well as plant-microbe interactions, were discussed.


Assuntos
Sapindaceae , Saponinas , Ascomicetos , Basidiomycota , Botrytis , Fusarium , Glicosídeos/farmacologia , Casca de Planta , Extratos Vegetais , Rhizoctonia , Terpenos/farmacologia , Xylella
7.
Nat Prod Res ; 33(2): 280-286, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29533086

RESUMO

From the butanolic and the ethyl acetate extracts of Rhamnus alaternus L root bark and leaves, three new anthraquinone glycosides, alaternosides A-C (1,4,6,8 tetrahydroxy-3 methyl anthraquinone 1-O-ß-D-glucopyranosyl-4,6-di-O-α-L-rhamnopyranoside (1); 1,2,6,8 tetrahydroxy-3 methyl anthraquinone 8-O-ß-D-glucopyranoside (2) and 1, 6 dihydroxy-3 methyl 6 [2'-Me (heptoxy)] anthraquinone (3)) were isolated and elucidated together with the two known anthraquinone glycosides, Physcion-8-O-rutinoside (4) and emodin-6-O-α-L-rhamnoside (5) as well as with the known kaempferol-7-methylether (6), ß-sitosterol (7) and ß-sitosterol-3-O-glycoside (8). Their chemical structures were elucidated using spectroscopic methods (1D-, 2D-NMR and FAB-MS). Free radical scavenging activity of the isolated compounds was evaluated by their ability to scavenge DPPH. free radicals. Compounds (3), (4) and (6) showed the highest activity with IC50 values of 9.46, 27.68 and 2.35 µg/mL, respectively.


Assuntos
Antraquinonas/isolamento & purificação , Rhamnus/química , Antraquinonas/farmacologia , Sequestradores de Radicais Livres , Glicosídeos/química , Glicosídeos/isolamento & purificação , Quempferóis , Estrutura Molecular , Extratos Vegetais/química
8.
Fitoterapia ; 128: 198-203, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29723564

RESUMO

Three triterpene glycosides were isolated from the roots of Weigela florida "rumba" (Bunge) A. DC.: two previously undescribed 3-O-ß-d-xylopyranosyl-(1→2)-[ß-d-xylopyranosyl-(1→4)]-ß-d-xylopyranosyl-(1→4)-ß-d-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyloleanolic acid (1) and 3-O-ß-d-xylopyranosyl-(1→2)-[ß-d-glucopyranosyl-(1→4)]-ß-d-xylopyranosyl-(1→4)-ß-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid (2), and one isolated for the first time from a natural source 3-O-ß-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyloleanolic acid (3). Their structures were elucidated mainly by 2D NMR spectroscopic analysis (COSY, TOCSY, NOESY, HSQC, HMBC) and mass spectrometry. Compounds 2 and 3 were further evaluated as antigens in enzyme-linked immunosorbent assay (ELISA) to recognize IgM antibodies in multiple sclerosis (MS) patients' sera.


Assuntos
Caprifoliaceae/química , Glicosídeos/isolamento & purificação , Ácido Oleanólico/análogos & derivados , Raízes de Plantas/química , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina M/química , Estrutura Molecular , Esclerose Múltipla/sangue , Ácido Oleanólico/isolamento & purificação
9.
Phytochemistry ; 140: 166-173, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28500929

RESUMO

The phytochemical study of two cultivars of Pittosporum tenuifolium Banks & Sol. ex Gaertn, "variegatum" and "gold star", led to the isolation of eight oleanane-type glycosides: seven previously undescribed and a known one. Their aglycons are oxygenated oleanane derivatives as barringtogenol C, camelliagenin A, hederagenin, and 22α-hydroxyoleanolic acid. Their structures were established by 2D NMR spectroscopic techniques and mass spectrometry as 3-O-ß-D-galactopyranosyl-(1 â†’ 2)-[α-L-arabinopyranosyl-(1 â†’ 3)]-ß-D-glucuronopyranosyl-21-O-angeloyl-22-O-acetylbarringtogenol C, 3-O-ß-D-galactopyranosyl-(1 â†’ 2)-[α-L-arabinopyranosyl-(1 â†’ 3)]-ß-D-glucuronopyranosyl-21,22-di-O-angeloylbarringtogenol C, 3-O-ß-D-galactopyranosyl-(1 â†’ 2)-[α-L-arabinopyranosyl-(1 â†’ 3)]-ß-D-glucuronopyranosyl-22-O-angeloylcamelliagenin A, 3-O-ß-D-glucopyranosyl-(1 â†’ 2)-[ß-D-glucopyranosyl-(1 â†’ 6)]-ß-D-glucopyranosyl-22-O-[(6-O-acetyl)-ß-D-glucopyranosyl]camelliagenin A, 3-O-ß-D-galactopyranosyl-(1 â†’ 2)-[α-L-arabinofuranosyl-(1 â†’ 4)]-ß-D-glucuronopyranosylhederagenin 28-O-ß-D-glucopyranosyl ester, 3-O-α-L-arabinofuranosyl-(1 â†’ 4)-ß-D-glucuronopyranosylhederagenin 28-O-ß-D-glucopyranosyl ester, 3-O-ß-D-galactopyranosyl-(1 â†’ 2)-[α-L-arabinofuranosyl-(1 â†’ 4)]-ß-D-glucuronopyranosyl-22α-hydroxyoleanolic acid 28-O-ß-D-glucopyranosyl ester, and the known ilexoside XLIX. These results represent a significative contribution to the chemotaxonomy of the genus Pittosporum, highlighting hederagenin-type saponins as chemotaxonomic markers of P. tenuifolium cultivars.


Assuntos
Glicosídeos/química , Ácido Oleanólico/análogos & derivados , Rosales/química , Glicosídeos/isolamento & purificação , Estrutura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Extratos Vegetais/química , Saponinas/química , Saponinas/isolamento & purificação
11.
Fitoterapia ; 114: 98-104, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27511059

RESUMO

From the aerial parts, pericarps and roots of Solenostemma argel, three new pregnane glycosides (1-3) with two known ones and a new phenolic glycoside (4) have been isolated. Their structures were established by extensive 1D - and 2D NMR and mass spectroscopic analysis. The cytotoxicity of all compounds was evaluated against two human tumor cell lines (SW 480, MCF-7), but none of them was active in the concentration range 0.9-59.0µM. Compounds 2 and the known argeloside F at non toxic concentrations for the PBMCs (27.3µM and 27.6µM, respectively) significantly decreased the Il-1ß production by LPS-stimulated PBMCs. All isolated compounds showed a significant antioxidant potential with ORAC values in the concentration range 3481-9617µmoleq. Trolox/100g.


Assuntos
Apocynaceae/química , Glicosídeos/química , Fenóis/química , Pregnanos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Glicosídeos/isolamento & purificação , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular , Fenóis/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química , Pregnanos/isolamento & purificação
12.
Nat Prod Commun ; 11(1): 37-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26996015

RESUMO

Five known cycloartane-type glycosides were isolated from the roots of A. tmoleus Boiss. var. tmoleus. The identification of these compounds was mainly achieved by 1D and 2D NMR spectroscopic techniques and FABMS. The results of our studies confirm that triterpene saponins with the cycloartane-type skeleton might be chemotaxonomically significant for the genus Astragalus.


Assuntos
Astrágalo/química , Saponinas/química , Astrágalo/classificação , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química
13.
Nat Prod Commun ; 10(6): 1005-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26197537

RESUMO

A new aromatic compound 3,4,5-trimethoxyphenyl-1-O-(4-sulfo)-ß-D-glucopyranoside (1), in addition to two triterpenoid saponins (chebuloside II, arjunoglucoside II), two triterpenes (arjunolic acid and 3-betulinic acid) and sitosterol-3-O-ß-D-glucopyranoside have been isolated from the barks of Terminalia catappa. Their structures have been established on the basis of spectroscopic techniques (1D/2D NMR) and MS. Their cytotoxicity and antiinflammatory activity, together with the antioxidant capacity of compound 1 were also evaluated.


Assuntos
Extratos Vegetais/química , Terminalia/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Caules de Planta/química
14.
Nat Prod Commun ; 10(1): 37-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25920215

RESUMO

Three steroidal glycosides were isolated from the bark of Dracaena fragrans (L.) Ker Gawl. "Yellow Coast", and a fourth from the roots and the leaves. Their structures were characterized on the basis of extensive 1D and 2D NMR experiments and mass spectrometry, and by comparison with NMR data of the literature. These saponins have the spirostane-type skeleton and are reported in this species for the first time.


Assuntos
Dracaena/química , Fitosteróis/isolamento & purificação , Saponinas/isolamento & purificação , Fitosteróis/química , Saponinas/química
15.
Biochem Biophys Res Commun ; 452(4): 873-80, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25157808

RESUMO

Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/ß1-6Galß1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galß1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.


Assuntos
Éteres/química , Galactolipídeos/química , Fitol/química , Extratos Vegetais/química , Ulva/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/isolamento & purificação , Éteres/isolamento & purificação , Galactolipídeos/isolamento & purificação , Fitol/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Especificidade da Espécie , Ulva/classificação
16.
Fitoterapia ; 97: 198-203, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928475

RESUMO

Three new steroidal saponins, named diospreussinosides A-C (1-3), along with two known ones (4, 5) were isolated from rhizomes of Dioscorea preussii. Their structures were elucidated mainly by 1D and 2D NMR spectroscopic analysis and mass spectrometry as (25S)-17α,25-dihydroxyspirost-5-en-3ß-yl-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranoside (1), (25S)-17α,25-dihydroxyspirost-5-en-3ß-yl-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (2), and (24S,25R)-17α,24,25-trihydroxyspirost-5-en-3ß-yl-O-α-L-rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3). The spirostane-type skeleton of compound 3 possessing an unusual dihydroxylation pattern on the F-ring is reported for the first time. Cytotoxicity of compounds 2-5 was evaluated against two human colon carcinoma cell lines (HT-29 and HCT 116).


Assuntos
Dioscorea/química , Fitosteróis/isolamento & purificação , Saponinas/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HT29 , Humanos , Estrutura Molecular , Fitosteróis/química , Saponinas/química
17.
Fitoterapia ; 91: 231-235, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24042073

RESUMO

The phytochemical investigation of the root barks of Pittosporum verticillatum Bojer subsp. verticillatum led to the isolation of three new triterpene saponins, 3-O-[ß-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-ß-D-glucuronopyranosyl-21-O-(2-acetoxy-2-methylbutanoyl)-R1-barrigenol (1), 3-O-[ß-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-ß-D-glucuronopyranosyl-21-O-(2-acetoxy-2-methylbutanoyl)-28-O-acetyl-R1-barrigenol (2), 3-O-[ß-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-ß-D-glucuronopyranosyl-21-O-ß,ß-dimethylacryloyl-22-O-angeloyl-R1-barrigenol (3), and one known saponin senaciapittoside B (4). Their structures were elucidated mainly by 1D- and 2D-NMR spectroscopy and HRESIMS. Compounds 1-4 were evaluated for their cytotoxicity against one human cancer cell line (SW480) and one rat cardiomyoblast cell line (H9c2).


Assuntos
Neoplasias , Extratos Vegetais/química , Rosales/química , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Casca de Planta/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ratos , Saponinas/química , Saponinas/farmacologia , Triterpenos/química , Triterpenos/farmacologia
18.
Nat Prod Commun ; 8(2): 157-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23513716

RESUMO

Three new steroidal saponins and ten known ones were isolated from the bark of Dracaena marginata, along with two known steroidal saponins from the roots. Their structures were elucidated on the basis of extensive 1D and 2D NMR experiments and mass spectrometry as (25R)-26-(beta-D-glucopyranosyloxy)3beta,22alpha-dihydroxyfurost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-[alpha-L-rhamnopyranosyl-(1 --> 4)]-beta-D-glucopyranoside (1), (25R)-26-(beta-D-glucopyranosyloxy)-3beta,22alpha-dihydroxyfurost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-sulfo-alpha-L-arabinopyranoside (2), and (25S)-3beta-hydroxyspirost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-sulfo-alpha-L-arabinopyranoside (3).


Assuntos
Dracaena/química , Saponinas/isolamento & purificação , Animais , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Saponinas/química , Saponinas/farmacologia
19.
Biol Pharm Bull ; 36(1): 152-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23302649

RESUMO

Metastasis occurs when cancer cells detach from a tumor, travel to distant sites in the body and develop into tumors in these new locations. Most cancer patients die from metastases. Among the various forms of cancer metastasis, lymphatic metastasis is an important determinant in cancer treatment and staging. In this study, we investigated lymphangiogenesis inhibitors from crude drugs used in Japan and Korea. The three crude drugs Saussureae Radix, Psoraleae Semen and Aurantti Fructus Immaturus significantly inhibited the proliferation of temperature-sensitive rat lymphatic endothelial (TR-LE) cells in vitro. By a chromatographic method using bioassay-guided fractionation methods, costunolide (1) and dehydrocostus lactone (2) from S. Radix, p-hydroxybenzaldehyde (3), psoralen (4), angelicin (5), psoracorylifol D (6), isobavachalone (7), bavachinin (8) Δ(3),2-hydroxybakuchiol (9) and bakuchiol (10) from P. Semen and cis-octadecyl ferulate (11), (2R)-3ß,7,4'-trihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone (12), (2S)-7,4'-dihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone (13) and umbelliferone (14) from A. F. Immaturus were obtained. Three compounds (compounds 11-13) from A. F. Immaturus were isolated for the first time from this medicinal plant. Among isolated compounds, ten compounds (compounds 1, 2, 6-12, 13) showed an inhibitory effect on the proliferation and the capillary-like tube formation of TR-LE cells. In addition, all compounds except compound 12 showed selective inhibition of the proliferation of TR-LE cells compared to Hela and Lewis lung carcinoma (LLC) cells. These compounds might offer clinical benefits as lymphangiogenesis inhibitors and may be good candidates for novel anti-cancer and anti-metastatic agents.


Assuntos
Inibidores da Angiogênese/farmacologia , Extratos Vegetais/farmacologia , Poncirus , Psoralea , Saussurea , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Frutas , Células HeLa , Humanos , Japão , Linfangiogênese/efeitos dos fármacos , Raízes de Plantas , Ratos , República da Coreia , Sementes
20.
Phytochemistry ; 86: 137-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23218611

RESUMO

Seven steroidal glycosides have been isolated from the fruits of Solanum torvum Swartz. Their structures were established by 2D NMR spectroscopic techniques ((1)H,(1)H-COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as (25S)-26-(ß-D-glucopyranosyloxy)-3-oxo-5α-furost-20(22)-en-6α-yl-O-ß-D-xylopyranoside (1), (25S)-26-(ß-D-glucopyranosyloxy)-3-oxo-22α-methoxy-5α-furostan-6α-yl-O-ß-D-xylopyranoside (2), (25S)-26-(ß-D-glucopyranosyloxy)-3ß-hydroxy-22α-methoxy-5α-furostan-6α-yl-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranoside (3), (25S)-3ß-hydroxy-5α-spirostan-6α-yl-O-ß-D-xylopyranoside (4), (25S)-3-oxo-5α-spirostan-6α-yl-O-ß-D-xylopyranoside (5), (25S)-3ß-hydroxy-5α-spirostan-6α-yl-O-ß-D-glucopyranoside (6), (25S)-3ß,27-dihydroxy-5α-spirostan-6α-yl-O-ß-D-glucopyranoside (7).


Assuntos
Frutas/química , Saponinas/química , Solanum/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA