Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 110(3): 881-898, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306701

RESUMO

The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. Camellia lanceoleosa underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of C. lanceoleosa and Camellia sinensis (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in C. lanceoleosa were significantly enriched in oil biosynthesis, and the expansion of homomeric acetyl-coenzyme A carboxylase (ACCase) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in C. lanceoleosa. Theanine and catechins were present in the leaves of C. lanceoleosa. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent N-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of C. lanceoleosa is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. Oleifera.


Assuntos
Camellia sinensis , Camellia , Cafeína/metabolismo , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromossomos , Evolução Molecular
2.
J Agric Food Chem ; 64(18): 3712-31, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27074598

RESUMO

Eucommia ulmoides Oliver, the only member of the Eucommiaceae family, is a rare and valuable tree used to produce a highly valued traditional Chinese medicine and contains α-linolenic acid (ALA) up to 60% of the total fatty acids in the kernels (embryos). Glycolysis provides both cellular energy and the intermediates for other biosynthetic processes. However, nothing was known about the molecular basis of the glycolytic pathway in E. ulmoides kernels. The purposes of this study were to identify novel genes of E. ulmoides related to glycolytic metabolism and to analyze the expression patterns of selected genes in the kernels. Transcriptome sequencing based on the Illumina platform generated 96,469 unigenes in four cDNA libraries constructed using RNAs from 70 and 160 days after flowering kernels of both low- and high-ALA varieties. We identified and characterized the digital expression of 120 unigenes coding for 24 protein families involved in kernel glycolytic pathway. The expression levels of glycolytic genes were generally higher in younger kernels than in more mature kernels. Importantly, several unigenes from kernels of the high-ALA variety were expressed more than those from the low-ALA variety. The expression of 10 unigenes encoding key enzymes in the glycolytic pathway was validated by qPCR using RNAs from six kernel stages of each variety. The qPCR data were well consistent with their digital expression in transcriptomic analyses. This study identified a comprehensive set of genes for glycolytic metabolism and suggests that several glycolytic genes may play key roles in ALA accumulation in the kernels of E. ulmoides.


Assuntos
Eucommiaceae/genética , Glicólise , Proteínas de Plantas/genética , RNA de Plantas/genética , Eucommiaceae/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/metabolismo , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA