Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36986163

RESUMO

Industrially originated trans-fatty acids (I-tFAs), such as elaidic acid (EA), and ruminant trans-fatty acids (R-tFAs), such as trans-palmitoleic acid (TPA), may have opposite effects on metabolic health. The objective was to compare the effects of consuming 2-3% I-tFA or R-tFA on the gut microbiome and fecal metabolite profile in mice after 7 and 28 days. Forty C57BL/6 mice were assigned to one of the four prepared formulations: lecithin nanovesicles, lecithin nanovesicles with EA or TPA, or water. Fecal samples and animals' weights were collected on days 0, 7, and 28. Fecal samples were used to determine gut microbiome profiles by 16S rRNA sequencing and metabolite concentrations by GC/MS. At 28 days, TPA intake decreased the abundance of Staphylococcus sp55 but increased Staphylococcus sp119. EA intake also increased the abundance of Staphylococcus sp119 but decreased Ruminococcaceae UCG-014, Lachnospiraceae, and Clostridium sensu stricto 1 at 28 days. Fecal short-chain fatty acids were increased after TPA while decreased after EA after 7 and 28 days. This study shows that TPA and EA modify the abundance of specific microbial taxa and fecal metabolite profiles in distinct ways.


Assuntos
Microbioma Gastrointestinal , Ácidos Graxos trans , Camundongos , Animais , RNA Ribossômico 16S/genética , Lecitinas/farmacologia , Camundongos Endogâmicos C57BL , Dieta , Ruminantes/genética
2.
Nutrients ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771316

RESUMO

Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet.


Assuntos
Ácidos Graxos trans , Feminino , Camundongos , Animais , Ácidos Graxos trans/efeitos adversos , Lecitinas , Paladar , Camundongos Endogâmicos C57BL , Ruminantes/metabolismo , Ácidos Graxos/metabolismo
3.
Pharm Res ; 37(8): 149, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681392

RESUMO

PURPOSE: Complexities surrounding the manufacture and quality control of nanomedicines become increasingly apparent. This research article offers a case study to investigate how, at the laboratory scale, various stages of liposome and nanoparticle synthesis affect the amount of residual solvent found in the formulations. The objective is to bring insights on the reliability of each of these processes to provide final products which meet regulatory standards and facilitate identifying possible bottleneck early during the development process. METHODS: The residual solvent at various stages of preparation and purification was measured by headspace gas chromatography. Liposomes were prepared by two different methods with and without solvent. Polymer nanoparticles prepared via nanoprecipitation and purified by ultrafiltration were studied. The effects of purification by size exclusion chromatography and dialysis were also investigated. RESULTS: The complete removal of residual solvent requires processes which go beyond usual preparation methods. CONCLUSIONS: This work might prove valuable as a reference for scientists of different fields to compare their own practices and streamline the translation of nanomedicines into efficacious and safe drug products.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Graxos/química , Lecitinas/química , Lipossomos/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Solventes/química , Cromatografia em Gel , Composição de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Nanomedicina
4.
Food Chem ; 322: 126736, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32325363

RESUMO

Fundamental nutritional studies on bioactive molecules require minimizing exposure to confounding foreign elements, like solvents. Herein, aqueous formulations of lecithin nanovesicles are proposed to study three individual trans fatty acids relevant to human nutrition: elaidic acid, trans-vaccenic acid and trans-palmitoleic acid. This proof-of-concept study describes the encapsulation of fatty acids, in vivo bioavailability, and the use of nanovesicles in behavioral experiments. The oral bioavailability of the encapsulated molecules and the selective exposure of animals to each trans-fatty acid of interest were confirmed in healthy rats. Behavioral studies also evidenced that nanovesicles can be used to evaluate the palatability of the lipids and investigate food preferences in mice. Altogether this study shows that lecithin nanovesicles offer an elegant tool to efficiently deliver hydrophobic molecules to animal models. This approach paves the way for future studies deconvoluting the nutritional effects of trans-fatty acids.


Assuntos
Lecitinas/química , Nanoestruturas/química , Nutrientes/química , Administração Oral , Animais , Disponibilidade Biológica , Dieta/veterinária , Ácidos Graxos/sangue , Ácidos Graxos/química , Feminino , Preferências Alimentares/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lecitinas/farmacocinética , Lecitinas/farmacologia , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Oleicos/química , Ácidos Oleicos/farmacologia , Ratos , Ácidos Graxos trans/análise , Ácidos Graxos trans/química , Ácidos Graxos trans/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA