Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 18(1): 151, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348104

RESUMO

BACKGROUND: Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. RESULTS: All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. CONCLUSION: Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge.


Assuntos
Bactérias Anaeróbias/classificação , Hidrocarbonetos/metabolismo , Metano/biossíntese , Petróleo/metabolismo , Esgotos/microbiologia , Bactérias Redutoras de Enxofre/classificação , Archaea/classificação , Archaea/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Biodegradação Ambiental , Fermentação , Índia , Consórcios Microbianos , Petróleo/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
2.
Genomics ; 109(5-6): 374-382, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28625866

RESUMO

Franconibacter pulveris strain DJ34, isolated from Duliajan oil fields, Assam, was characterized in terms of its taxonomic, metabolic and genomic properties. The bacterium showed utilization of diverse petroleum hydrocarbons and electron acceptors, metal resistance, and biosurfactant production. The genome (4,856,096bp) of this strain contained different genes related to the degradation of various petroleum hydrocarbons, metal transport and resistance, dissimilatory nitrate, nitrite and sulfite reduction, chemotaxy, biosurfactant synthesis, etc. Genomic comparison with other Franconibacter spp. revealed higher abundance of genes for cell motility, lipid transport and metabolism, transcription and translation in DJ34 genome. Detailed COG analysis provides deeper insights into the genomic potential of this organism for degradation and survival in oil-contaminated complex habitat. This is the first report on ecophysiology and genomic inventory of Franconibacter sp. inhabiting crude oil rich environment, which might be useful for designing the strategy for bioremediation of oil contaminated environment.


Assuntos
Enterobacteriaceae/crescimento & desenvolvimento , Genoma Bacteriano , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Composição de Bases , Biodegradação Ambiental , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Tamanho do Genoma , Filogenia , Análise de Sequência de DNA
3.
Bioresour Technol ; 242: 15-27, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28533069

RESUMO

Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Bactérias , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA