Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dig Dis ; 30 Suppl 3: 85-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23295697

RESUMO

The colonic mucus serves a first barrier towards invasion of commensal bacteria in stools to prevent inflammation. One essential component of intestinal mucus is phosphatidylcholine (PC) which represents more than 90% of the phospholipids in mucus indicative for a selective transport of PC into this compartment. It is arranged in lamellar structures as surfactant-like particles which provide a hydrophobic surface on top of the hydrated mucus gel to prevent the invasion of bacteria from intestinal lumen. In ulcerative colitis (UC), the mucus PC content is reduced by 70%, irrespective of the state of inflammation. Thus, it could represent an intrinsic primary pathogenetic condition predisposing to bacterial invasion and the precipitation of inflammation. Since PC was shown to be mainly secreted by the ileal mucosa from where it is assumed to move distally to the colon, the PC content along the colonic wall towards the rectum gradually thins, with the least PC content in the rectum. This explains the start of the clinical manifestation of UC in the rectum and the expansion from there to the upper parts of the colon. In three clinical trials, when missing mucus PC in UC was supplemented by an oral, delayed release PC preparation, the inflammation improved and even resolved after a 3-month treatment course. The data indicate the essential role of the mucus PC content for protection against inflammation in colon.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Substâncias Protetoras/farmacologia , Animais , Ensaios Clínicos como Assunto , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Humanos , Muco/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/uso terapêutico , Substâncias Protetoras/uso terapêutico
2.
Clin Cancer Res ; 16(23): 5734-49, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20940278

RESUMO

PURPOSE: We previously reported that small molecule X-linked inhibitor of apoptosis (XIAP) inhibitors synergize with soluble TRAIL to trigger apoptosis in pancreatic carcinoma cells. Because cancers may preferentially signal via 1 of the 2 agonistic TRAIL receptors, we investigated these receptors as a therapeutic target in pancreatic cancer in the present study. EXPERIMENTAL DESIGN: We examined TRAIL receptor expression and cytotoxicity of specific monoclonal antibodies to TRAIL-R1 (HGS-ETR1, mapatumumab) or TRAIL-R2 (HGS-ETR2, lexatumumab) and of TRAIL receptor selective mutants alone and in combination with small molecule XIAP inhibitors in pancreatic cancer cell lines, in primary specimens, and in a xenotransplant model in vivo. RESULTS: The majority of primary pancreatic carcinoma samples and all cell lines express one or both agonistic TRAIL receptors. Nine of 13 cell lines are more sensitive to mapatumumab-induced apoptosis, whereas lexatumumab requires cross-linking for maximal activity. Similarly, TRAIL-R1 selective mutants display higher cytotoxicity than TRAIL-R2 selective mutants. Small molecule XIAP inhibitors preferentially act in concert with mapatumumab to trigger caspase activation, caspase-dependent apoptosis, and suppress clonogenic survival. Also, primary cultured pancreatic carcinoma cells are more susceptible to mapatumumab than lexatumumab, which is significantly enhanced by a XIAP inhibitor. Importantly, combined treatment with mapatumumab and a XIAP inhibitor cooperates to suppress tumor growth in vivo. CONCLUSIONS: Mapatumumab exerts antitumor activity, especially in combination with XIAP inhibitors against most pancreatic carcinoma cell lines, whereas lexatumumab requires cross-linking for optimal cytotoxicity. These findings have important implications for the design of TRAIL-based protocols for pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma/patologia , Neoplasias Pancreáticas/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Idoso , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/administração & dosagem , Carcinoma/metabolismo , Linhagem Celular Tumoral , Embrião de Galinha , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem
3.
Crit Care Med ; 35(2): 544-54, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17205023

RESUMO

OBJECTIVE: Cytokines, platelet-activating factor (PAF), and eicosanoids control local and systemic inflammation. Conventional soybean oil-based lipid emulsions used for parenteral nutrition may aggravate the leukocyte inflammatory response or adhesion to the vessel wall. Fish oil-based lipid emulsions, in contrast, may exert an anti-inflammatory effect. DESIGN: We investigated the impact of lipid emulsions on leukocyte invasion, protein leakage, and cytokines in two murine models of acute inflammation. SETTING: Research laboratory of a university hospital. SUBJECTS: Wild-type mice and PAF-receptor knockout mice. INTERVENTIONS: Mice received an infusion of normal saline, fish oil- or soybean oil-based lipid emulsions before lipopolysaccharide challenge. MEASUREMENTS AND MAIN RESULTS: Preinfusion with soybean oil resulted in increased leukocyte invasion, myeloperoxidase activity, and protein leakage and exaggerated release of tumor necrosis factor (TNF)-alpha as well as macrophage inflammatory protein (MIP)-2 into the alveolar space after intratracheal lipopolysaccharide challenge. In contrast, preinfusion with fish oil reduced leukocyte invasion, myeloperoxidase activity, protein leakage, and TNF-alpha as well as MIP-2 generation. Corresponding profiles were found in plasma following intraperitoneal lipopolysaccharide application: Soybean oil increased but fish oil decreased the TNF-alpha and MIP-2 formation. When PAF-receptor-deficient mice were challenged with lipopolysaccharide, leukocyte invasion, lung tissue myeloperoxidase, cytokine generation, and alveolar protein leakage corresponded to those observed in wild-type animals. Fish oil and soybean oil lost their diverging effects on leukocyte transmigration, myeloperoxidase activity, leakage response, and cytokine generation in these knockout mice. Similarly, the differential impact of both lipid emulsions on these lipopolysaccharide-provoked changes was suppressed after pretreating animals with a PAF-receptor antagonist. CONCLUSIONS: Fish oil- vs. soybean oil-based lipid infusions exert anti- vs. proinflammatory effects in murine models of acute inflammation. The PAF/PAF-receptor-linked signaling appears to be a prerequisite for this differential profile.


Assuntos
Quimiocinas/fisiologia , Emulsões Gordurosas Intravenosas/farmacologia , Óleos de Peixe/farmacologia , Inflamação/terapia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Glicoproteínas da Membrana de Plaquetas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Síndrome do Desconforto Respiratório/terapia , Óleo de Soja/farmacologia , Animais , Quimiocina CXCL2 , Emulsões Gordurosas Intravenosas/uso terapêutico , Óleos de Peixe/uso terapêutico , Camundongos , Camundongos Knockout , Óleo de Soja/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA