Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(5): e0177647, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545065

RESUMO

Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidade , Proteínas Repressoras/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação para Baixo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/toxicidade , Ferro/metabolismo , Mutagênese , Estresse Oxidativo/efeitos dos fármacos , Pectobacterium carotovorum/metabolismo , Proteínas Repressoras/genética , Sideróforos/metabolismo , Solanum tuberosum/microbiologia , Superóxido Dismutase/metabolismo , Virulência/genética
2.
Mol Plant Pathol ; 18(1): 32-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26788858

RESUMO

Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain.


Assuntos
Mutação/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Percepção de Quorum/genética , Solanum tuberosum/microbiologia , Xilema/microbiologia , Bioensaio , Suscetibilidade a Doenças , Flagelos/metabolismo , Flagelos/ultraestrutura , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Pectobacterium carotovorum/ultraestrutura , Tubérculos/microbiologia , Virulência/genética
3.
BMC Genomics ; 17(1): 614, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515663

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. RESULTS: In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. CONCLUSIONS: Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Pectobacterium carotovorum/patogenicidade , RNA Longo não Codificante/genética , RNA de Plantas/genética , Solanum tuberosum/genética , Cromossomos de Plantas/química , Éxons , Biblioteca Gênica , Ontologia Genética , Anotação de Sequência Molecular , Pectobacterium carotovorum/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Caules de Planta/genética , Caules de Planta/imunologia , Caules de Planta/microbiologia , RNA Longo não Codificante/classificação , RNA Longo não Codificante/imunologia , RNA de Plantas/classificação , RNA de Plantas/imunologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
4.
Mol Plant Microbe Interact ; 28(4): 420-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25411959

RESUMO

Type VI secretion systems (T6SSs) are a class of macromolecular machines that are recognized as an important virulence mechanism in several gram-negative bacteria. The genome of Pantoea ananatis LMG 2665(T), a pathogen of pineapple fruit and onion plants, carries two gene clusters whose predicted products have homology with T6SS-associated gene products from other bacteria. Nothing is known regarding the role of these T6SS-1 and T6SS-3 gene clusters in the biology of P. ananatis. Here, we present evidence that T6SS-1 plays an important role in the pathogenicity of P. ananatis LMG 2665(T) in onion plants, while a strain lacking T6SS-3 remains as pathogenic as the wild-type strain. We also investigated the role of the T6SS-1 system in bacterial competition, the results of which indicated that several bacteria compete less efficiently against wild-type LMG 2665(T) than a strain lacking T6SS-1. Additionally, we demonstrated that these phenotypes of strain LMG 2665(T) were reliant on the core T6SS products TssA and TssD (Hcp), thus indicating that the T6SS-1 gene cluster encodes a functioning T6SS. Collectively, our data provide the first evidence demonstrating that the T6SS-1 system is a virulence determinant of P. ananatis LMG 2665(T) and plays a role in bacterial competition.


Assuntos
Sistemas de Secreção Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Pantoea/genética , Pantoea/patogenicidade , Doenças das Plantas/microbiologia , Virulência/genética , Sistemas de Secreção Bacterianos/fisiologia , Técnicas de Inativação de Genes , Genes Bacterianos , Interações Hospedeiro-Patógeno/fisiologia , Família Multigênica , Mutação , Cebolas/microbiologia , Pantoea/fisiologia , Virulência/fisiologia
5.
Phytopathology ; 103(12): 1268-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23758294

RESUMO

Pectobacterium carotovorum subsp. brasiliense is a newly identified member of the potato soft rot enterobacteriaceae. The pathogenesis of this pathogen is still poorly understood. In this study, an mCherry-P. carotovorum subsp. brasiliense-tagged strain was generated to study P. carotovorum subsp. brasiliense-potato plant interactions. Prior to use, the tagged strain was evaluated for in vitro growth, plasmid stability, and virulence on potato tubers and shown to be similar to the wild type. Four potato cultivars were evaluated for stem-based resistance against P. carotovorum subsp. brasiliense. Confocal laser-scanning microscopy and in vitro viable cell counts showed that P. carotovorum subsp. brasiliense is able to penetrate roots of a susceptible potato cultivar as early as 12 h postinoculation and migrate upward into aerial stem parts. Due to the phenotypic differences observed between tolerant and susceptible cultivars, a comparison of P. carotovorum subsp. brasiliense colonization patterns in these cultivars was undertaken. In the susceptible cultivar, P. carotovorum subsp. brasiliense cells colonized the xylem tissue, forming "biofilm-like" aggregates that led to occlusion of some of the vessels. In contrast, in the tolerant cultivar, P. carotovorum subsp. brasiliense appeared as free-swimming planktonic cells with no specific tissue localization. This suggests that there are resistance mechanisms in the tolerant cultivar that limit aggregation of P. carotovorum subsp. brasiliense in planta and, hence, the lack of symptom development in this cultivar.


Assuntos
Resistência à Doença , Suscetibilidade a Doenças , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas Luminescentes , Microscopia Confocal , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/imunologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Caules de Planta/imunologia , Caules de Planta/microbiologia , Tubérculos/imunologia , Tubérculos/microbiologia , Plasmídeos , Proteínas Recombinantes de Fusão , Solanum tuberosum/imunologia , Virulência , Proteína Vermelha Fluorescente
6.
Nature ; 450(7166): 115-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17914356

RESUMO

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Nicotiana/metabolismo , Phytophthora/metabolismo , Sinais Direcionadores de Proteínas , Solanum tuberosum/metabolismo , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional , Pectobacterium/genética , Phytophthora/química , Transporte Proteico , Pseudomonas syringae/genética , Solanum tuberosum/microbiologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA