Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncotarget ; 2(5): 407-17, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21576760

RESUMO

The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential for the function of various oncoproteins that are vital components of multiple signaling networks regulating cancer cell proliferation, survival, and metastasis. Hsp90 chaperone function is coupled to its ATPase activity, which can be inhibited by natural products such as the ansamycin geldanamycin (GA) and the resorcinol radicicol (RD). These compounds have served as templates for development of numerous natural product Hsp90 inhibitors. More recently, second generation, fully synthetic Hsp90 inhibitors, based on a variety of chemical scaffolds, have also been synthesized. Together, 18 natural product and synthetic Hsp90 inhibitors have entered clinical trial in cancer patients. To successfully develop Hsp90 inhibitors for oncology indications it is important to understand the factors that influence the susceptibility of Hsp90 to these drugs in vivo. We recently reported that Casein Kinase 2 phosphorylates a conserved threonine residue (T22) in helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. Phosphorylation of this residue reduces ATPase activity and affects Hsp90 chaperone function. Here, we present additional data demonstrating that ATP binding but not N-domain dimerization is a prerequisite for T22 phosphorylation. We also provide evidence that T22 is an important determinant of Hsp90 inhibitor sensitivity in yeast and we show that T22 phosphorylation status contributes to drug sensitivity in vivo.


Assuntos
Caseína Quinase II/metabolismo , Proteínas Fúngicas/metabolismo , Lactamas Macrocíclicas/uso terapêutico , Neoplasias/tratamento farmacológico , Resorcinóis/uso terapêutico , Ensaios Clínicos como Assunto , Desenho de Fármacos , Resistência a Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Terapia de Alvo Molecular , Fosforilação , Treonina/metabolismo , Leveduras
2.
Yeast ; 26(6): 339-47, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19399909

RESUMO

Saccharomyces cerevisiae lacks enzymes that contain the molybdopterin co-factor and therefore any requirement for molybdenum as a trace mineral supplement. Instead, high molybdate levels are inhibitory to its growth. Low cellular levels of heat shock protein 90 (Hsp90), an essential chaperone, were found to enhance this sensitivity to molybdate. Certain Hsp90 point mutations and co-chaperone protein defects that partially compromise the function of the Hsp90/Cdc37p chaperone system also rendered S. cerevisiae hypersensitive to high molybdate levels. Sensitivity was especially apparent with mutations close to the Hsp90 nucleotide binding site, with the loss of the non-essential co-chaperone Sti1p (the equivalent of mammalian Hop), and with the abolition of residue Ser14 phosphorylation on the essential co-chaperone Cdc37p. While it remains to be proved that these effects reflect direct inhibition of the Hsp90 of the cell by the MoO(4) (2+) oxyanion in vivo; this possibility is suggested by molybdate sensitivity arising with a mutation in the Hsp90 nucleotide binding site that does not generate stress sensitivity or an impaired stress response. Molybdate sensitivity may therefore be a useful phenotype to score when studying mutations in this chaperone system.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Farmacorresistência Fúngica/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Molibdênio/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico , Chaperonas Moleculares/genética , Mutação , Nucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Eur J Biochem ; 270(15): 3189-95, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12869194

RESUMO

The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Aminoácidos Aromáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetatos/farmacologia , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Transporte Biológico/efeitos dos fármacos , Farmacorresistência Fúngica , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA