Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38167425

RESUMO

Conscious perception in mammals depends on precise circuit connectivity between cerebral cortex and thalamus; the evolution and development of these structures are closely linked. During the wiring of reciprocal thalamus-cortex connections, thalamocortical axons (TCAs) first navigate forebrain regions that had undergone substantial evolutionary modifications. In particular, the organization of the pallial-subpallial boundary (PSPB) diverged significantly between mammals, reptiles, and birds. In mammals, transient cell populations in internal capsule and early corticofugal projections from subplate neurons closely interact with TCAs to guide pathfinding through ventral forebrain and PSPB crossing. Prior to thalamocortical axon arrival, cortical areas are initially patterned by intrinsic genetic factors. Thalamocortical axons then innervate cortex in a topographically organized manner to enable sensory input to refine cortical arealization. Here, we review the mechanisms underlying the guidance of thalamocortical axons across forebrain boundaries, the implications of PSPB evolution for thalamocortical axon pathfinding, and the reciprocal influence between thalamus and cortex during development.


Assuntos
Neurônios , Tálamo , Animais , Axônios/fisiologia , Córtex Cerebral , Mamíferos , Vias Neurais/fisiologia
2.
Neuron ; 112(5): 805-820.e4, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38101395

RESUMO

The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo. We found powerful output in the higher-order thalamus and apical dendrites of L5 pyramidal neurons, via L1a and L5a, as well as in superior colliculus and L6 interneurons. L6b subpopulations with distinct morphologies and short- and long-term plasticities project to these diverse targets. The L1a-targeting subpopulation triggered powerful NMDA-receptor-dependent spikes that elicited burst firing in L5. We conclude that orexin/hypocretin-activated cortical neurons form a multifaceted, fine-tuned circuit for the sustained control of the higher-order thalamocortical system.


Assuntos
Dendritos , Neurônios , Camundongos , Animais , Orexinas , Dendritos/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Células Piramidais
3.
J Paediatr Child Health ; 59(10): 1140-1145, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37545420

RESUMO

AIM: To characterise parathyroid hormone (PTH) concentrations in infants at high risk for metabolic bone disease, in order to assist clinical decisions around the use of PTH for screening. METHODS: Infants born under 28 weeks' postmenstrual age or with birthweight under 1.5 kg in a tertiary neonatal unit in the UK were included. Clinical guidance was to assess PTH concentration in the first 3 weeks after birth. Clinical information was extracted from prospective records. RESULTS: Sixty-four infants had mean birth gestation of 26 weeks and birthweight of 882 g. Median PTH (sent on median day 18 of life) was 9.2 pmol/L (interquartile range 5.3-17 pmol/L). Sixty-seven per cent of infants had a PTH greater than 7 pmol/L. For 22% of the infants, raised PTH was not accompanied by abnormal phosphate or alkaline phosphatase. Eighty-nine per cent of infants tested were insufficient or deficient for 25-hydroxyvitamin D. CONCLUSIONS: Universal screening highlights the high frequency of high PTH in this high-risk population, implying a need for calcium supplementation. A considerable number of infants would not be identified as showing potential signs of metabolic bone disease if the assessment excludes the use of PTH. The high level of 25-hydroxyvitamin D deficiency may be a confounder.

4.
J Neurosci ; 42(41): 7757-7781, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096667

RESUMO

All pathways targeting the thalamus terminate directly onto the thalamic projection cells. As these cells lack local excitatory interconnections, their computations are fundamentally defined by the type and local convergence patterns of the extrinsic inputs. These two key variables, however, remain poorly defined for the "higher-order relay" (HO) nuclei that constitute most of the thalamus in large-brained mammals, including humans. Here, we systematically analyzed the input landscape of a representative HO nucleus of the mouse thalamus, the posterior nucleus (Po). We examined in adult male and female mice the neuropil distribution of terminals immunopositive for markers of excitatory or inhibitory neurotransmission, mapped input sources across the brain and spinal cord and compared the intranuclear distribution and varicosity size of axons originated from each input source. Our findings reveal a complex landscape of partly overlapping input-specific microdomains. Cortical layer (L)5 afferents from somatosensory and motor areas predominate in central and ventral Po but are relatively less abundant in dorsal and lateral portions of the nucleus. Excitatory inputs from the trigeminal complex, dorsal column nuclei (DCN), spinal cord and superior colliculus as well as inhibitory terminals from anterior pretectal nucleus and zona incerta (ZI) are each abundant in specific Po regions and absent from others. Cortical L6 and reticular thalamic nucleus terminals are evenly distributed across Po. Integration of specific input motifs by particular cell subpopulations may be commonplace within HO nuclei and favor the emergence of multiple, functionally diverse input-output subnetworks.SIGNIFICANCE STATEMENT Because thalamic projection neurons lack local interconnections, their output is essentially determined by the kind and convergence of the long-range inputs that they receive. Fragmentary evidence suggests that these parameters may vary within the "higher-order relay" (HO) nuclei that constitute much of the thalamus, but such variation has not been systematically analyzed. Here, we mapped the origin and local convergence of all the extrinsic inputs reaching the posterior nucleus (Po), a typical HO nucleus of the mouse thalamus by combining multiple neuropil labeling and axon tracing methods. We report a complex mosaic of partly overlapping input-specific domains within Po. Integration of different input motifs by specific cell subpopulations in HO nuclei may favor the emergence of multiple, computationally specialized thalamocortical subnetworks.


Assuntos
Núcleos Posteriores do Tálamo , Tálamo , Humanos , Masculino , Feminino , Camundongos , Animais , Vias Neurais/fisiologia , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Colículos Superiores , Mamíferos
5.
J Comp Neurol ; 530(7): 978-997, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35078267

RESUMO

Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.


Assuntos
Corpos Geniculados , Córtex Visual , Animais , Corpos Geniculados/fisiologia , Camundongos , Núcleos Talâmicos , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia
6.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251335

RESUMO

Subplate neurons (SPNs) are thought to play a role in nascent sensory processing in neocortex. To better understand how heterogeneity within this population relates to emergent function, we investigated the synaptic connectivity of Lpar1-EGFP SPNs through the first postnatal week in whisker somatosensory cortex (S1BF). These SPNs comprise of two morphological subtypes: fusiform SPNs with local axons and pyramidal SPNs with axons that extend through the marginal zone. The former receive translaminar synaptic input up until the emergence of the whisker barrels, a timepoint coincident with significant cell death. In contrast, pyramidal SPNs receive local input from the subplate at early ages but then - during the later time window - acquire input from overlying cortex. Combined electrical and optogenetic activation of thalamic afferents identified that Lpar1-EGFP SPNs receive sparse thalamic innervation. These data reveal components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of S1BF.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Estimulação Elétrica/métodos , GABAérgicos/metabolismo , Camundongos , Optogenética/métodos , Tálamo/metabolismo , Vibrissas/metabolismo
7.
J Biotechnol ; 307: 35-43, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678206

RESUMO

Microalgae synthesize a variety of potentially high-value compounds. Due to their robust cell wall, cell disruption is necessary to improve extraction of these compounds. While cell disruption methods have been optimized for lipid and protein extraction, there are limited studies for other bioactive compounds. The present study investigated the effect of freeze-drying combined with sonication or ball-milling on the extraction of antioxidant and plant biostimulating compounds from Chlorella sp., Chlorella vulgaris and Scenedesmus acutus. Both cell disruption methods resulted in higher extract yields from the biomass compared to freeze-dried biomass using 50% methanol as a solvent. Antioxidant activity of Chlorella extracts was generally higher than freeze-dried extracts based on the diphenylpicrylhydrazyl (DPPH) and ß-carotene linoleic acid assays. However, the effectiveness of each treatment varied between microalgae strains. Sonication resulted in the highest antioxidant activity in Chlorella sp. extracts. Ball-milling gave the best results for C. vulgaris extracts in the DPPH assay. Both cell disruption methods decreased antioxidant activity in S. acutus extracts. Plant biostimulating activity was tested using the mung bean rooting assay. Damaging the membrane by freeze-drying was sufficient to release the active compounds using water extracts. In contrast, both cell disruption methods negatively affected the biological activity of the extracts. These results indicate that bioactive compounds in microalgae are sensitive to post-harvest processes and their biological activity can be negatively affected by cell disruption methods. Care must be taken to not only optimize yield but to also preserve the biological activity of the target compounds.


Assuntos
Antioxidantes/isolamento & purificação , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Scenedesmus/metabolismo , Sonicação/métodos , Antioxidantes/metabolismo , Biomassa , Chlorella vulgaris/química , Liofilização , Metanol , Microalgas/química , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/química , Scenedesmus/química , Solventes
9.
Neuron ; 92(1): 126-142, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27641493

RESUMO

Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.


Assuntos
Orientação de Axônios/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas do Citoesqueleto/fisiologia , Lisofosfolipídeos/fisiologia , Proteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Córtex Cerebral/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Discriminação Psicológica/fisiologia , Cones de Crescimento/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Fosforilação , Tálamo/metabolismo
10.
Neuron ; 89(3): 536-49, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26844833

RESUMO

GABAergic activity is thought to influence developing neocortical sensory circuits. Yet the late postnatal maturation of local layer (L)4 circuits suggests alternate sources of GABAergic control in nascent thalamocortical networks. We show that a population of L5b, somatostatin (SST)-positive interneuron receives early thalamic synaptic input and, using laser-scanning photostimulation, identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period. Sensory perturbation disrupts the transition to a local GABAergic circuit, suggesting a link between translaminar and local control of SSNs. Conditional silencing of SST+ interneurons or conversely biasing the circuit toward local inhibition by overexpression of neuregulin-1 type 1 results in an absence of early L5b GABAergic input in mutants and delayed thalamic innervation of SSNs. These data identify a role for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex.


Assuntos
Interneurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Estimulação Elétrica , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Vias Neurais , Neuregulina-1/biossíntese , Estimulação Luminosa , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Somatostatina/fisiologia
11.
J Neurosci ; 35(38): 13053-63, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400936

RESUMO

Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons via the cognate receptor CXCR4. This paracrine signal may ensure thalamocortical connectivity and dispersion of inhibitory neurons in the rapidly growing cortex.


Assuntos
Córtex Cerebral/citologia , Quimiocina CXCL12/metabolismo , Interneurônios/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Tálamo/citologia , Animais , Axônios/metabolismo , Córtex Cerebral/embriologia , Quimiocina CXCL12/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Filamentos Intermediários/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Tálamo/embriologia
12.
Eur J Neurosci ; 35(10): 1573-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22607003

RESUMO

Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.


Assuntos
Axônios/fisiologia , Padronização Corporal/fisiologia , Córtex Cerebral/embriologia , Neurônios/citologia , Tálamo/embriologia , Animais , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Vias Neurais/fisiologia , Tálamo/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Eur J Neurosci ; 35(10): 1586-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22607004

RESUMO

We are interested in the role of neural activity mediated through regulated vesicular release in the stopping and early branching of the thalamic projections in the cortex. Axon outgrowth, arrival at the cortical subplate, side-branch formation during the waiting period and cortical plate innervation of embryonic thalamocortical projections occurs without major abnormalities in the absence of regulated release in Snap25 (-/-) null mutant mice [Washbourne et al. (2002) Nat. Neurosci. 5:19-26; Molnár et al. (2002) J. Neurosci. 22:10313-10323]. The fact that Snap25 (-/-) null mutant mice die at birth limited our previous experiments to the prenatal period. We therefore investigated the behaviour of thalamic projections in co-culture paradigms by using heterochronic thalamic [embryonic day (E)16-E18] and cortical [postnatal day (P)0-P3] explants, in which the stopping and branching behaviour has been previously documented. Our current co-culture experiments established that thalamic projections from E16-E18 Snap25(+/+) or Snap25 (-/-) explants behaved in an identical fashion in P0-P3 Snap25 (+/+) cortical explants after 7 days in vitro. Thalamic projections from Snap25 (-/-) explants developed similar patterns of fibre ingrowth to the cortex, and stopped and formed branches at a similar depth in the Snap25(+/+) cortical slice as in control cultures. These results imply that thalamic projections can reach their ultimate target cells in layer 4, stop, and start to develop branches in the absence of regulated vesicular transmitter release from their own terminals.


Assuntos
Axônios/fisiologia , Córtex Cerebral , Vias Neurais , Neurônios/citologia , Proteína 25 Associada a Sinaptossoma/deficiência , Tálamo , Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Técnicas de Cocultura , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos , Estatísticas não Paramétricas , Tálamo/citologia , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento
15.
PLoS Biol ; 7(4): e98, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19402755

RESUMO

The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations.


Assuntos
Axônios/fisiologia , Plasticidade Neuronal/fisiologia , Semaforinas/metabolismo , Núcleos Talâmicos/embriologia , Tálamo/embriologia , Córtex Visual/embriologia , Vias Visuais/embriologia , Animais , Feminino , Corpos Geniculados/embriologia , Corpos Geniculados/fisiologia , Camundongos , Camundongos Knockout , Telencéfalo/embriologia , Telencéfalo/fisiologia , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia
16.
J Comp Neurol ; 511(3): 415-20, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18803242

RESUMO

The emergence of the whisker-related patterning of the barrel cortex during the first postnatal week is a frequently assessed feature of rodent cortical development and has been used extensively to screen for effects of genetic mutations on neural development in mice. As alterations in body weight often accompany genetic mutations, we asked whether body weight itself might affect the progression of barrel cortex development in wildtype C57/BL6 mice. The body weight varied considerably between as well as within litters, and could differ by a factor of up to 1.6 between littermates. The establishment of the periphery-related and barrel patterning was assessed at postnatal (P days) 4 and 6 using cytochrome oxidase and Nissl staining. We found that only 20% of the mouse pups had an established thalamocortical afferent pattern in the barrel cortex at P4 (4 out of 21 brains), while the majority of the pups showed a well-established pattern at P6 (13 of 16 brains). At both ages the more developed barrel structure was found in the heavier littermates. Conversely, no periphery-related pattern was apparent in the somatosensory cortex at either P4 or P6 below a critical body weight of 2.6 g and 2.0 g, respectively. These findings may have implications for the interpretation of developmental changes in the barrel cortex of genetically modified mice.


Assuntos
Peso Corporal , Córtex Somatossensorial , Tálamo , Vias Aferentes/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Vibrissas/inervação
17.
J Neurosci ; 28(35): 8724-34, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18753373

RESUMO

Transcription factor Pax6 exerts a prominent rostrolateral(high) to caudomedial(low) expression gradient in the cortical progenitors and have been implicated in regulation of area identity in the mammalian cortex. Herein, we analyzed the role of Pax6 in molecular arealization and development of thalamocortical connections in the juvenile cortex-specific conditional Pax6 knock-out mice (Pax6cKO). Using a set of molecular markers of positional identity (Id2, Cadherin6, COUP-TF1, RZRbeta, and EphA7), we show that, in the juvenile Pax6cKO, the relative size of caudal cortical areas (putative visual and somatosensory) are mildly enlarged, whereas the rostral domain (putative motor) is severely reduced. Despite the rostral shift of graded expression of areal markers, the distribution of area-specific thalamocortical and corticofugal projections appear normal in the Pax6cKO. This indicates that change of the size of cortical areas is not accompanied by a change in cortical identity. We show furthermore that, despite a severe depletion of supragranular cortical layers and accumulation of cells along the pallial-subpallial boundary, thalamocortical fibers establish a periphery-related pattern of the somatosensory cortex in normal position in Pax6cKO. Our findings indicate that Pax6 expression gradients in cortical progenitors do not directly impart thalamocortical or corticofugal areal identity.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Fatores de Transcrição Box Pareados/deficiência , Tálamo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Fator I de Transcrição COUP/metabolismo , Caderinas/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Olho , Proteínas de Homeodomínio/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares , Fator de Transcrição PAX6 , Receptor EphA7/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras , Tálamo/metabolismo , Fatores de Transcrição/genética
18.
Cell ; 125(1): 24-7, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16615886

RESUMO

Innervation of the neocortex by the thalamus is dependent on the precise coordination of spatial and temporal guidance cues. In this issue of Cell, work by López-Bendito et al.(2006) reveals that tangentially migrating cells within the ventral telencephalon are essential for axonal navigation between the thalamus and the neocortex, a process apparently mediated by Neuregulin-1/ErbB4 short- and long-range signaling.


Assuntos
Axônios/metabolismo , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neuregulina-1/metabolismo , Tálamo/citologia , Animais , Receptores ErbB/metabolismo , Receptor ErbB-4 , Transdução de Sinais , Tálamo/metabolismo
19.
Neuron ; 49(5): 639-42, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16504936

RESUMO

Donald Hebb postulated the existence of a mechanism of activity-dependent transcription and synaptic modification almost 60 years ago. While the details of this process are still unclear, a new study by Ince-Dunn et al. in this issue of Neuron indicates that NeuroD2, a calcium-regulated transcription factor, plays a central role in thalamocortical synaptic maturation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cálcio/metabolismo , Vias Neurais/crescimento & desenvolvimento , Neuropeptídeos/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento , Animais , Camundongos , Modelos Biológicos
20.
J Neurosci ; 25(6): 1395-406, 2005 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-15703393

RESUMO

Transient synapse formation between thalamic axons and subplate neurons is thought to be important in thalamocortical targeting. Shaking rat Kawasaki (SRK), having reversed cortical layering similarly observed in reeler mouse, provides an interesting model system to test this idea. The spatial and temporal pattern of excitation was investigated using optical recording with voltage-sensitive dyes in thalamocortical slice preparations from SRK. At postnatal day 0 (P0), a strong optical response was elicited within the superplate of the SRK in the cell layer corresponding to subplate in wild-type (WT) rats. By P3, this response rapidly descended into deep cortical layers comprised of layer IV cells, as identified with 5-bromo-2'-deoxyuridine birthdating at embryonic day 17. During the first 3 postnatal days, both the subplate and cortical plate responses were present, but by P7, the subplate response was abolished. Tracing individual axons in SRK revealed that at P0-P3, a large number of thalamocortical axons reach the superplate, and by P7-P10, the ascending axons develop side branches into the lower or middle cortical layers. Synaptic currents were also demonstrated in WT subplate cells and in SRK superficial cortical cells using whole-cell recording. These currents were elicited monosynaptically, because partial AMPA current blockade did not modify the latencies. These results suggest that the general developmental pattern of synapse formation between thalamic axons and subplate (superplate) neurons in WT and SRK is very similar, and individual thalamic arbors in cortex are considerably remodeled during early postnatal development to find layer IV equivalent neurons.


Assuntos
Córtex Cerebral/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Sinapses/fisiologia , Tálamo/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Axônios/ultraestrutura , Linhagem da Célula , Senescência Celular , Córtex Cerebral/crescimento & desenvolvimento , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Microscopia Confocal , Doenças do Sistema Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Ratos , Ratos Mutantes , Córtex Somatossensorial/fisiopatologia , Córtex Somatossensorial/ultraestrutura , Tálamo/crescimento & desenvolvimento , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA