Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(8): 1274-1285, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30544254

RESUMO

Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.


Assuntos
Cardiomiopatias/metabolismo , Ataxia de Friedreich/fisiopatologia , Miócitos Cardíacos/fisiologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Ataxia de Friedreich/terapia , Terapia Genética/métodos , Humanos , Proteínas de Ligação ao Ferro/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Distribuição Tecidual , Frataxina
2.
Biol Aujourdhui ; 211(2): 169-172, 2017.
Artigo em Francês | MEDLINE | ID: mdl-29236668

RESUMO

Claude Bernard (1813-1878) was fascinated by the pharmacological mechanisms of poisons. In particular, using a huge amount of ingenious and robust experiments, he demonstrated the peripheral toxic action of the natural compound curare. His work generated controversies in a period where scientific methodology and technical development followed the progression of concepts and ideas. From his intense debates with Albert Vulpian emerged the location of curare's toxicity at the neuromuscular junction. These two fascinating scientists could not imagine how important were these discoveries which allowed John Langley to propose the concept of receptor early in the 20th century. At the same time, the German immunologist Paul Ehrlich suggested that these receptors could be targeted by so-called "magic bullets", i.e., drugs that act on receptors, in order to treat patients. The molecular substrate of curare's activity was identified many years later as the nicotinic receptor of the motor end-plate. We now have curare molecules belonging to various chemical families that block receptors during anaesthesia. Suggamadex is the antidote for two of them, a drug that Claude Bernard perhaps dreamt of. We also have the recently marketed varenicline that acts as a partial agonist of nicotinic receptors in the central nervous system to treat patients from tobacco addiction. This rich story shows that biomedical research needs collaborations, imagination, perspicacity but also all results that it can have many years later, therefore challenging researchers about consequences of their discoveries.


Assuntos
Pesquisa Biomédica/história , Pessoal de Laboratório , Junção Neuromuscular/fisiologia , Receptores Nicotínicos/fisiologia , Abandono do Hábito de Fumar , Curare , História do Século XIX , História do Século XX , Humanos , Pessoal de Laboratório/história , Abandono do Hábito de Fumar/métodos , Nicotiana/efeitos adversos , Tabagismo/fisiopatologia , Tabagismo/terapia
3.
J Hypertens ; 33(11): 2310-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259125

RESUMO

OBJECTIVE: Left-ventricular hypertrophy and interstitial fibrosis are the main pathophysiological factors of heart failure with preserved ejection fraction. Blockade of the serotonin 5-HT2B receptor (5-HT2BR) has been shown to reduce cardiac hypertrophy, oxidative stress, and extracellular cell matrix activation. In this study, we evaluated the effects of the 5-HT2BR blockade, on hemodynamic and cardiac remodeling, in spontaneously hypertensive rats (SHRs) that display a diastolic dysfunction with preserved ejection fraction. METHOD: Thirty-seven-week-old SHRs were randomized in four groups receiving either saline, the selective 5-HT2BR antagonist RS-127445 (1 mg/kg per day), a calcium channel blocker nicardipine (6 mg/kg per day), or RS-127445 + nicardipine. During the 14 weeks of treatment period, cardiac function and blood pressure were monitored by echocardiography and tail-cuff. Finally, electrocardiograms and invasive hemodynamics were obtained before blood collection. Heart was analyzed for morphology and mRNA expression. A complementary study evaluated the cardiac and vascular effects of serotonin on wild-type and mice knockout for the 5-HT2BR (Htr2B) and/or the 5-HT2AR (Htr2A). RESULTS: Despite the left ventricular 5-HT2BR overexpression, 5-HT2BR blockade by RS-127445 did not affect left ventricular hypertrophy and fibrosis in SHRs. This antagonist did not improve diastolic dysfunction, neither alone nor in combination with nicardipine, although it induced plasma brain natriuretic peptide decrease. Moreover, RS-127445 amplified subendocardial fibrosis and favored left ventricular dilatation. Finally, a subendocardial left ventricular fibrosis was induced by chronic serotonin in wild-type mice, which was increased in Htr2B animals, but prevented in Htr2A and Htr2A/2B mice, and could be explained by a contribution of the endothelial 5-HT2BRs to coronary vasodilatation. CONCLUSION: This work is the first to identify a cardioprotective function of the 5-HT2BR in an integrated model of diastolic dysfunction with preserved ejection fraction.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Pressão Sanguínea/fisiologia , Ecocardiografia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Peptídeo Natriurético Encefálico/metabolismo , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
4.
Circulation ; 110(8): 969-74, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15302781

RESUMO

BACKGROUND: The serotonergic 5-HT2B receptor regulates cardiomyocyte development and growth. A putative contribution of this receptor to fibroblast-dependent cardiac function has not been identified. METHODS AND RESULTS: By mimicking sympathetic stimulation with chronic isoproterenol perfusion in vivo, we found that mice developed a cardiac hypertrophy, which was prevented by exposure to the 5-HT2B receptor antagonists SB206553 or SB215505 or in 5-HT2B receptor-knockout mice. The isoproterenol-induced hypertrophy was associated with an increase in the plasma levels of interleukin-1beta and tumor necrosis factor-alpha but not interleukin-6. In contrast, the plasma isoproterenol-induced cytokine increase was not observed in either 5-HT2B receptor-mutant or wild-type mice perfused with isoproterenol+SB206553. We demonstrated that stimulation of wild-type cardiac fibroblasts by isoproterenol markedly increased the production of the interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokines. Strikingly, we found that this isoproterenol-induced cytokine production was abolished by SB206553 or in 5-HT2B receptor-knockout fibroblasts. Serotonin also stimulated production of the 3 cytokines in wild-type fibroblasts, which was effectively reduced in 5-HT2B receptor-knockout fibroblasts. CONCLUSIONS: Our results demonstrate for the first time that 5-HT2B receptors are essential for isoproterenol-induced cardiac hypertrophy, which involves the regulation of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by cardiac fibroblasts.


Assuntos
Cardiomegalia/fisiopatologia , Fibroblastos/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Miócitos Cardíacos/citologia , Piridinas/uso terapêutico , Quinolinas/farmacologia , Receptor 5-HT2B de Serotonina/fisiologia , Antagonistas da Serotonina/uso terapêutico , Sistema Nervoso Simpático/fisiopatologia , Antagonistas de Receptores Adrenérgicos beta 1 , Antagonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ventrículos do Coração/citologia , Imidazóis/farmacologia , Interleucina-1/biossíntese , Interleucina-1/sangue , Interleucina-1/genética , Interleucina-6/biossíntese , Interleucina-6/sangue , Interleucina-6/genética , Isoproterenol/toxicidade , Camundongos , Camundongos Knockout , Propanolaminas/farmacologia , Piridinas/farmacologia , Quinolinas/uso terapêutico , Receptor 5-HT2B de Serotonina/deficiência , Receptor 5-HT2B de Serotonina/genética , Receptores Adrenérgicos beta 1/análise , Receptores Adrenérgicos beta 2/análise , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatomiméticos/toxicidade , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA