Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(14): 7974-7983, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31187628

RESUMO

Uranium speciation and bioaccumulation were investigated in the sea urchin Paracentrotus lividus. Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained. Combining both extended X-ray Absorption Spectroscopy and time-resolved laser-induced fluorescence spectroscopic analysis, it was possible to identify two different forms of uranium in the sea urchin, one in the test, as a carbonato-calcium complex, and the second one in the gonads and intestinal tract, as a protein complex. Toposome is a major calcium-binding transferrin-like protein contained within the sea urchin. EXAFS data fitting of both contaminated organs in vivo and the uranium-toposome complex from protein purified out of the gonads revealed that it is suspected to complex uranium in gonads and intestinal tract. This hypothesis is also supported by the results from two imaging techniques, i.e., Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy. This thorough investigation of uranium uptake in sea urchin is one of the few attempts to assess the speciation in a living marine organism in vivo.


Assuntos
Paracentrotus , Urânio , Animais , Gônadas
2.
Dalton Trans ; 44(12): 5417-27, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25689216

RESUMO

Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data. The uranium complex was identified as the neutral carbonato calcic complex UO2(CO3)3Ca2, which has been previously described in other natural systems. In the case of neptunium, the complex identified is mainly a carbonato complex whose exact stoichiometry is more difficult to assess. The knowledge of the actinide molecular speciation and reactivity in seawater is of fundamental interest in the particular case of uranium recovery and more generally regarding the actinide life cycle within the biosphere in the case of accidental release. This is the first report of actinide direct speciation in seawater medium that can complement inventory data.


Assuntos
Netúnio/análise , Água do Mar/análise , Urânio/análise , Espectrometria de Fluorescência , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA