Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190586, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012230

RESUMO

Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape (n = 7; 700 CE Mexico) and historic dental calculus (n = 44; 1770-1855 CE, UK), as well as two novel dental calculus datasets: Maya (n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians (n = 11; 1400-850 BCE, Italy). Periodontitis-associated bacteria (Treponema denticola, Fusobacterium nucleatum and Eubacterium saphenum) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers (Eubacterium biforme, Phascolarctobacterium succinatutens) and potentially disease-associated bacteria (Escherichia, Brachyspira). Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter-gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Bactérias/isolamento & purificação , DNA Antigo/análise , Cálculos Dentários/história , Fezes/microbiologia , Microbiota , Arqueologia , Belize , DNA Bacteriano/análise , Cálculos Dentários/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , História Antiga , História Medieval , Humanos , Itália , México
2.
Proc Natl Acad Sci U S A ; 107(15): 6759-64, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351276

RESUMO

The Farming/Language Dispersal Hypothesis posits that prehistoric population expansions, precipitated by the innovation or early adoption of agriculture, played an important role in the uneven distribution of language families recorded across the world. In this case, the most widely spread language families today came to be distributed at the expense of those that have more restricted distributions. In the Americas, Uto-Aztecan is one such language family that may have been spread across Mesoamerica and the American Southwest by ancient farmers. We evaluated this hypothesis with a large-scale study of mitochondrial DNA (mtDNA) and Y-chromosomal DNA variation in indigenous populations from these regions. Partial correlation coefficients, determined with Mantel tests, show that Y-chromosome variation in indigenous populations from the American Southwest and Mesoamerica correlates significantly with linguistic distances (r = 0.33-0.384; P < 0.02), whereas mtDNA diversity correlates significantly with only geographic distance (r = 0.619; P = 0.002). The lack of correlation between mtDNA and Y-chromosome diversity is consistent with differing population histories of males and females in these regions. Although unlikely, if groups of Uto-Aztecan speakers were responsible for the northward spread of agriculture and their languages from Mesoamerica to the Southwest, this migration was possibly biased to males. However, a recent in situ population expansion within the American Southwest (2,105 years before present; 99.5% confidence interval = 1,273-3,773 YBP), one that probably followed the introduction and intensification of maize agriculture in the region, may have blurred ancient mtDNA patterns, which might otherwise have revealed a closer genetic relationship between females in the Southwest and Mesoamerica.


Assuntos
Cromossomos Humanos Y/ultraestrutura , DNA Mitocondrial/ultraestrutura , Variação Genética , Indígenas Norte-Americanos/genética , Idioma , Agricultura/métodos , Evolução Biológica , América Central , Emigração e Imigração , Etnicidade/genética , Feminino , Genética Populacional , História Antiga , Humanos , Indígenas Norte-Americanos/história , Masculino , Dados de Sequência Molecular , Fatores Sexuais , Sudoeste dos Estados Unidos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA