Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dig Liver Dis ; 52(3): 314-323, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607566

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disorder. NAFLD, associated lipotoxicity, fibrosis, oxidative stress, and altered mitochondrial metabolism, is responsible for systemic inflammation, which contributes to organ dysfunction in extrahepatic tissues, including the heart. We investigated the ability of L-carnitine (LC) to oppose the pathogenic mechanisms underlying NAFLD progression and associated heart dysfunction, in a mouse model of methionine-choline-deficient diet (MCDD). Mice were divided into three groups: namely, the control group (CONTR) fed with a regular diet and two groups fed with MCDD for 6 weeks. In the last 3 weeks, one of the MCDD groups received LC (200 mg/kg each day) through drinking water (MCDD + LC). The hepatic lipid accumulation and oxidative stress decreased after LC supplementation, which also reduced hepatic fibrosis via modulation of α-smooth muscle actin (αSMA), peroxisome-activated receptor gamma (PPARγ), and nuclear factor kappa B (NfƙB) expression. LC ameliorated systemic inflammation, mitigated cardiac reactive oxygen species (ROS) production, and prevented fibrosis progression by acting on signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1-2 (ERK1-2), and αSMA. This study confirms the existence of a relationship between fatty liver disease and cardiac abnormalities and highlights the role of LC in controlling liver oxidative stress, steatosis, fibrosis, and NAFLD-associated cardiac dysfunction.


Assuntos
Carnitina/farmacologia , Suplementos Nutricionais , Cardiopatias/prevenção & controle , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Deficiência de Colina , Dieta , Modelos Animais de Doenças , Progressão da Doença , Cardiopatias/etiologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
Biomed Res Int ; 2019: 5678548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800672

RESUMO

Bone fragility and associated fracture risk are major problems in aging. Oxidative stress and mitochondrial dysfunction play a key role in the development of bone fragility. Mitochondrial dysfunction is closely associated with excessive production of reactive oxygen species (ROS). L-Carnitine (L-C), a fundamental cofactor in lipid metabolism, has an important antioxidant property. Several studies have shown how L-C enhances osteoblastic proliferation and activity. In the current study, we investigated the potential effects of L-C on mitochondrial activity, ROS production, and gene expression involved in osteoblastic differentiation using osteoblast-like cells (hOBs) derived from elderly patients. The effect of 5mM L-C treatment on mitochondrial activity and L-C antioxidant activity was studied by ROS production evaluation and cell-based antioxidant activity assay. The possible effects of L-C on hOBs differentiation were assessed by analyzing gene and protein expression by Real Time PCR and western blotting, respectively. L-C enhanced mitochondrial activity and improved antioxidant defense of hOBs. Furthermore, L-C increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Additionally, L-C induced the phosphorylation of ERK1/2 and AKT and the main kinases involved in osteoblastic differentiation and upregulated the expression of osteogenic related genes, RUNX2, osterix (OSX), bone sialoprotein (BSP), and osteopontin (OPN) as well as OPN protein synthesis, suggesting that L-C exerts a positive modulation of key osteogenic factors. In conclusion, L-C supplementation could represent a possible adjuvant in the treatment of bone fragility, counteracting oxidative phenomena and promoting bone quality maintenance.


Assuntos
Matriz Óssea/efeitos dos fármacos , Carnitina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/metabolismo , Matriz Óssea/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo , Oxirredução , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp7/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
J Oleo Sci ; 67(10): 1315-1326, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30210078

RESUMO

Nuts-enriched diets were shown to bear beneficial effects for human's health. Among nuts, hazelnut plays a major role in human nutrition and health because of its unique fatty acid composition (predominantly MUFA), fat soluble bioactives (tocopherols and phytosterols), vitamins (vitamin E), essential minerals (selenium), essential amino acids, antioxidant phenolics (caffeic acid), dietary fiber (soluble form), and bioactive phtytochemicals. The current study was designed to explore the cellular effects of two particular hazelnut strains (Ordu and Tonda).Four hazelnut oils were obtained from 2 common strains (Ordu hazelnut oil, Ordu cuticle oil, Tonda "gentile" hazelnut oil, Tonda "gentile" cuticle oil). The metabolic and nutritional effects of the four hazelnut oils were assessed using an in vitro model of mouse myoblasts, identifying the intracellular mechanisms involved in muscle differentiation and in the modulation of specific muscle genes.We demonstrated that hazelnut oils induced morphological changes in neo-formed myotubes increasing myotubes size. In particular, the diversified effects of the hazelnuts and cuticle oils on muscle fibres shape (on length and diameter respectively) determine a diversified pattern of action on elongation or hypertrophy of the muscle fibres. Furthermore, hazelnut oils regulate different pathways associated with myoblasts growth and development, stimulate signal transduction, and activate cell commitment and differentiation. The present results provide evidence that hazelnut oils may affect skeletal muscle growth and differentiation, constituting the proof of principle for the future development of novel foods and integrators.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corylus/química , Mioblastos Esqueléticos/fisiologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aminoácidos Essenciais/análise , Animais , Antioxidantes/análise , Ácidos Cafeicos/análise , Células Cultivadas , Fibras na Dieta/análise , Ácidos Graxos Monoinsaturados/análise , Camundongos , Compostos Fitoquímicos/análise , Óleos de Plantas/química , Selênio/análise , Estimulação Química , Tocoferóis/análise , Vitamina E/análise
4.
J Diabetes Res ; 2018: 4028297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622968

RESUMO

BACKGROUND: Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. OBJECTIVE: The aim of this work was to investigate LC's role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. METHODS: H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. RESULTS: Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. CONCLUSIONS: Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.


Assuntos
Antioxidantes/farmacologia , Carnitina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Hiperglicemia/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Oxid Med Cell Longev ; 2015: 646171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838869

RESUMO

The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial ß-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance ß-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging.


Assuntos
Carnitina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteína MyoD/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Transl Med ; 11: 174, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23870626

RESUMO

BACKGROUND: Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. METHODS: We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. RESULTS: We performed a dose-response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. CONCLUSIONS: Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment.


Assuntos
Betaína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Suplementos Nutricionais , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA