Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Endocrinol ; 248(2): 167-179, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289685

RESUMO

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycaemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic ß-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycaemic control in mice injected with the GLP1 receptor antagonist Exendin (9-39) amide. The effects of CTSS on glycaemic control were not retained in high-fat-fed mice or db/db mice, despite the preservation of CTSS' inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycaemic control via direct effects on hepatocytes, and that these effects on glycaemic control are abrogated in insulin resistant states.


Assuntos
Glicemia , Catepsinas/sangue , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Catepsinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Controle Glicêmico , Fígado/metabolismo , Camundongos
2.
Sci Rep ; 4: 5538, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24986106

RESUMO

Excess dietary lipid generally leads to fat deposition and impaired glucose homeostasis, but consumption of fish oil (FO) alleviates many of these detrimental effects. The beneficial effects of FO are thought to be mediated largely via activation of the nuclear receptor peroxisomal-proliferator-activated receptor α (PPARα) by omega-3 polyunsaturated fatty acids and the resulting upregulation of lipid catabolism. However, pharmacological and genetic PPARα manipulations have yielded variable results. We have compared the metabolic effects of FO supplementation and the synthetic PPARα agonist Wy-14,643 (WY) in mice fed a lard-based high-fat diet. In contrast to FO, WY treatment resulted in little protection against diet-induced obesity and glucose intolerance, despite upregulating many lipid metabolic pathways. These differences were likely due to differential effects on hepatic lipid synthesis, with FO decreasing and WY amplifying hepatic lipid accumulation. Our results highlight that the beneficial metabolic effects of FO are likely mediated through multiple independent pathways.


Assuntos
Adiposidade/efeitos dos fármacos , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/administração & dosagem , Obesidade/dietoterapia , Obesidade/metabolismo , PPAR alfa/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Administração Oral , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Óleos de Peixe/uso terapêutico , Intolerância à Glucose/dietoterapia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/diagnóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA