RESUMO
Spent coffee grounds (SCG) are a bioresidue generated in large amounts worldwide, which could be employed as either fresh or transformed organic soil amendment, by means of different treatments in order to improve its agronomic qualities. An in vitro experiment was conducted in order to evaluate the effect of using different bioamendments derived from spent coffee grounds (SCG) on biomass and Zn, Cu and Fe content of lettuces. Application of 7.5% (w/w) fresh SCG, vermicompost, compost, biochars (at 270 and 400 °C; pyrolysis), SCG washed with ethanol and water, and hydrolysed SCG was carried out in an agricultural soil (Cambic Calcisol). In order to compare with conventional agriculture, the addition of NPK fertilizer was also assessed. Only vermicompost and biochar at 400 °C overcome the growth limitation of SCG. However, these treatments diminished Zn, Cu and Fe concentrations in lettuce probably due to the destruction (microbial degradation/thermal treatment) of natural chelating components (polyphenols). Increase in mineral content was observed in those treatments that did not completely eliminate polyphenols. NPK fertilizer gave rise to lettuces with higher biomass but lower micronutrients content. The results lead us to the possible solution for the use of SCG as organic amendment by vermicomposting and biocharization in order to eliminate toxicity.
Assuntos
Café , Solo , Agricultura , Carvão Vegetal , Quelantes , Compostagem , FertilizantesRESUMO
The element concentration in lettuces grouped in 5 categories (baby variety, cultivated in agricultural soils with low or high percentages of spent coffee grounds-SCG, without SCG and with NPK) were measured. Lettuces cultivated in agricultural soils amended with SCG had significantly higher levels of several essential (V, Fe, Co, V, and probably Mn and Zn) and toxic elements (Al and probably As), without reaching their toxicological limits. Additionally, blocking of N uptake and therefore plant biomass, and probably Cd absorption from agricultural soil was observed. Organic farming with SCG ameliorates element concentrations in lettuces vs. NPK fertilization. The linear correlations among element uptake and the amendment of SCG could be related with their chelation by some SCG components, such as melanoidins and with the decrease in the soil pH. In conclusion, the addition of SCG produces lettuces with higher element content.