Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 26(3): 201-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716276

RESUMO

Odd-chain saturated fatty acids generally serve as specific biomarkers of dietary components and dairy intake, some of which have anticancer properties. This study was performed to assess the anticancer effects of heptadecanoic acid (HDNA) in human pancreatic carcinoma cells. MTT (thiazolyl blue tetrazolium bromide) assay showed that HDNA exerted stronger cytotoxic effects than pentadecanoic acid, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2) on both Panc-1 and MIA PaCa-2 pancreatic cancer cells. In addition, HDNA reduced colony formation and induced apoptosis in these pancreatic cancer cells as indicated by Hoechst 33342 staining, Annexin V/propidium iodide staining, cell cycle analysis, and Western blotting analysis in a dose-dependent manner. Moreover, HDNA synergistically reduced cell viability and promoted apoptosis when combined with gemcitabine (GEM), a chemotherapeutic agent commonly used in the treatment of pancreatic cancer. GEM-resistant MIA PaCa-2 (GR-MIA PaCa-2) cells with a resistance indices (RI) value of 215.09 [RI = half-maximal inhibitory concentration (IC50) of GR-MIA PaCa-2 cells/IC50 of MIA PaCa-2 cells] were established, and the efficacy of HDNA on GEM chemosensitivity was confirmed. Surprisingly, HDNA exhibited even higher antiproliferative efficacy against GR-MIA PaCa-2 cells (IC50 = 71.45 ± 6.37 µM) than parental MIA PaCa-2 cells (IC50 = 77.47 ± 2.10 µM). Finally, HDNA treatment inhibited the Hippo pathway and induced apoptosis of GR-MIA PaCa-2 cells. These findings suggest the beneficial effects of a HDNA-rich diet during pancreatic cancer treatments.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Ácidos Graxos/farmacologia , Apoptose , Neoplasias Pancreáticas
2.
J Cosmet Dermatol ; 19(7): 1785-1792, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31763737

RESUMO

BACKGROUND: Annona squamosa L. is a branched shrub, which is believed to be originated from the America and West Indies. Fruits of this plant are commonly known as custard apple, sugar apple, or sweetsops. A number of studies have proven a range of biological activities associated with various parts of A. squamosa. AIMS: The main aim of the present investigation was to evaluate potential inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis and its underlying mechanisms in B16F10 murine melanoma cells. METHODS: Inhibitory effects of A. squamosa leaf extract (ALE) on melanogenesis were primarily assessed by determining melanin contents. Effects of ALE on tyrosinase activity and the expression of proteins associated with melanogenesis were then determined. GC-MS analysis was carried out to identify the phytochemical profile of A. squamosa leaf extract. RESULTS: Antimelanogenic effects of ALE were found to exert through the inhibition of melanocyte inducing transcription factor (MITF) and activation of p38. GC-MS analysis identified ent-kaur-16-en-19-ol, 18-oxokauran-17-yl acetate, and ß-sitosterol as major phytochemicals. CONCLUSION: To our knowledge, this is the first study on the antimelanogenic effects of A. squamosa leaves, rationalizing the use A. squamosa leaf extract as a natural depigmentation agent for the treatment of skin diseases and the development of cosmetic products with enhanced skin-lightening capabilities.


Assuntos
Annona , Melanoma Experimental , Animais , Annona/metabolismo , Linhagem Celular Tumoral , Melaninas , Melanoma Experimental/tratamento farmacológico , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , alfa-MSH/farmacologia
3.
Phytomedicine ; 63: 153000, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31280139

RESUMO

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and it is intrinsically resistant to anticancer drugs. Nootkatone (NKT), which is the main fragrant component of grapefruit, has been identified as a bioactive compound with a wide range of beneficial applications. NKT can activate AMP-activated protein kinase (AMPK) in liver and muscle cells, however, little is known about the role of NKT in cancer, particularly its role in NSCLC with high rates of liver kinase B1 (LKB1) and KRAS mutations. PURPOSE: The anti-cancer activities of NKT in NSCLC A549 cells and ADR-resistant A549/ADR cells were investigated and compared to those of metformin, an AMPK activator that is used clinically as an AMPK activator. METHODS: Cell viability, proliferation and NKT sensitization were determined by the MTT assay. Mechanisms of NKT against anti-cancer activities including AMPK activation, cell cycle arrest, and synergistic cytotoxic effect were evaluated by Western blot analysis, and flow cytometry. In in vivo experiments, athymic BALB/c male nude mice were used for experiments. After the successful generation of tumor models through subcutaneous injection of A549/ADR cells, NKT and/or ADR were administered and mice were kept for weekly measurements for up to 7 weeks. The animals were then sacrificed, and the tumors were removed from all animals and weighed. RESULTS: NKT activated AMPK via LKB1-independent and CAMKK2-dependent pathways, leading to inhibition of cell growth and induction of G1 cell arrest. The effect of NKT is comparable but superior to that of metformin, an AMPK activator in clinical use. Importantly, NKT inhibited the activation of oncogenic AKT and ERK proteins, while metformin inhibited AKT but failed to impact ERK, the major oncogenic protein of NSCLC cells with KRAS mutation. The synergistic activity of NKT and ADR was more effective than that of metformin and ADR. In vivo data confirmed synergistic effects of NKT and ADR without systemic side effects. CONCLUSION: We demonstrate for the first time that NKT can sensitize ADR-resistant A549/ADR cells to ADR in vitro and in vivo. Metformin, on the other hand, failed to show any synergistic effect with ADR in A549/ADR cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus paradisi/química , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metformina/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Sesquiterpenos Policíclicos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216782

RESUMO

Pavetta indica L. is used in traditional medicine for the treatment of various diseases including hemorrhoids, headache, urinary conditions, ulcerated nose, and dropsy. However, no study has evaluated the anticancer effect of P. indica L. In this study, we found that a methanol extract of the leaves and branches of P. indica L. (MEPI) caused cellcycle arrest at the sub-G1 phase and induced apoptosis, as indicated by the activation of caspase-8, -3, -7, and c-PARP. Western blotting revealed that MEPI significantly reduced the levels of markers of the epithelial-mesenchymal transition, such as Vimentin, Snail, Slug, and matrix metallopeptidase 9. Notably, the expression of multidrug resistance-associated protein 1 in triple negative breast cancer (TNBC) was significantly decreased by MEPI. Moreover, the co-treatment with MEPI and doxorubicin resulted in a synergistic reduction in cell viability. MEPI also induced radiation sensitization of TNBC cells. Gas chromatography-mass spectrometry analysis revealed that 5,6-dehydrokawain (DK) is the major constituent of MEPI. Interestingly, DK exerted significant anti-invasive and anti-metastatic effects. Our results provide a strong rationale for investigating the molecular mechanisms of action of MEPI in TNBC.


Assuntos
Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Rubiaceae/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Metanol , Extratos Vegetais/química , Radiossensibilizantes/química , Solventes , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Nutrients ; 10(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486290

RESUMO

Drug resistance is a major problem in the treatment of non-small-cell lung cancer (NSCLC). In this study, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to identify the differentially expressed genes in Adriamycin (ADR)-resistant NSCLC A549/ADR cells compared with parental A549 cells. Among the tested phytochemicals, nobiletin (NBT) is able to overcome the ADR resistance of A549/ADR cells. NBT treatment decreased the expression of a neuroblastoma-derived MYC (MYCN) and multidrug resistance-associated protein 1 (MRP1) as well as downregulating Akt, GSK3ß, and ß-catenin. Consistent with these results, NBT treatment resulted in the accumulation of intracellular ADR. A combination index (CI) assay confirmed the synergistic effect of combined treatment with NBT and ADR in reducing the viability of A549/ADR cells (CI = 0.152). Combined treatment with NBT and ADR enhanced apoptosis in A549/ADR cells, as evidenced by increased caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, and sub-G1 population compared to treatment with ADR alone. In vivo experiments using a mouse xenograft model revealed that combination therapy with NBT and ADR significantly reduced tumor volume by 84.15%. These data suggest that NBT can sensitize ADR-induced cytotoxicity against A549/ADR cells by inhibiting MRP1 expression, indicating that NBT could serve as an effective adjuvant agent for ADR-based chemotherapy in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citrus/química , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Células A549 , Animais , Quimioterapia Adjuvante , Feminino , Flavonas/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
6.
Nutr Cancer ; 70(6): 984-996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273054

RESUMO

Kaempferia parviflora (KP) is a famous medicinal plant from Thailand, and is a rich source of various kinds of methoxyflavones (MFs). Many kinds of food products such as tea, capsule, and liquor are manufactured from the rhizomes of KP. In this study, KP infusions were prepared with different brewing conditions, and the amounts of three major methoxylflavones, 5,7-dimethoxyflavone (DMF), 5,7,4'-trimethoxyflavone (TMF), and 3,5,7,3',4'-pentamethoxyflavone (PMF), were analyzed. The antiproliferative activities of DMF, TMF, and PMF isolated from the brewed tea samples were evaluated. TMF was discovered to be significantly effective at inhibiting proliferation of SNU-16 human gastric cancer cells in a concentration dependent manner. TMF induced apoptosis, as evidenced by increments of sub-G1 phase, DNA fragmentation, annexin-V/PI staining, the Bax/Bcl-xL ratio, proteolytic activation of caspase-3,-7,-8, and degradation of poly (ADP-ribose) polymerase (PARP) protein. Furthermore, it was found that TMF induced apoptosis via ER stress, verified by an increase in the level of C/EBP homologous protein (CHOP), glucose regulated protein 78 (GRP78), inositol-requiring enzyme 1 α (IRE1α), activating transcription factor-4 (ATF-4), and the splice isoform of X-box-binding protein-1 (XBP-1) mRNA.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Zingiberaceae/química , Fator 4 Ativador da Transcrição/análise , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Flavonas/análise , Flavonas/isolamento & purificação , Glicogênio Sintase Quinase 3 beta/análise , Humanos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/análise , Fator de Transcrição CHOP/análise , Proteína 1 de Ligação a X-Box/genética , Proteína bcl-X/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-26351512

RESUMO

The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE) of phalsak (Citrus hassaku Hort ex Tanaka) fruits was analyzed by gas chromatography-mass spectrometry (GC-MS). Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP) protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells.

8.
J Food Sci ; 76(1): C38-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21535651

RESUMO

Pitaya, commonly known as dragon fruit, has generated considerable consumer interest because of its attractive color and micronutrient content. The present study investigated the total polyphenol and flavonoid content, antioxidant activity against various free radicals, and antiproliferative effect on several cancer cell lines of extracts of flesh and peel of white and red pitayas, collected from Jeju Island, Korea. The total polyphenol and flavonoid contents of 80% methanol extracts of red pitaya peel (RPP) and white pitaya peel (WPP) were approximately 3- and 5-fold higher than those of red pitaya flesh (RPF) and white pitaya flesh (WPF), respectively. Overall, the total flavonoid and polyphenol contents of these extracts were RPP>WPP>RPF>WPF and WPP>RPP>RPF>WPF, respectively. In addition, a study involving nontargeted high-performance liquid chromatography coupled with a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI-MS) of different pitaya extracts indicated the presence of phenolic, hydroxycinnamic acid derivatives, flavonol glycosides, betacyanin, and its derivatives with a few unknown compounds. Separately, peel extracts of both red and white pitayas showed higher 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and alkyl radical-scavenging activity than did the corresponding flesh extracts. Both peel extracts also showed stronger antiproliferative activity against AGS and MCF-7 cancer cells than either flesh extract. There was a direct correlation between the phenolic content and antioxidant effect, but no correlation observed between antioxidant activity and antiproliferative activity. These results suggest that the peel of white and red pitaya may be a valuable ingredient in foods and may also be useful in cosmetic, nutraceutical, and pharmaceutical applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Cactaceae/química , Flavonoides/análise , Frutas/química , Fenóis/análise , Extratos Vegetais/farmacologia , Algoritmos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cinamatos/análise , Cinamatos/química , Cinamatos/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Fenóis/química , Fenóis/farmacologia , Pigmentação , Extratos Vegetais/química , Polifenóis , República da Coreia , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
Food Chem Toxicol ; 48(8-9): 2435-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20538032

RESUMO

Citrus grandis Osbeck (Dangyuja) has a high content of flavonoids with health-related properties. Although previous data have revealed the anticancer potency of some Citrus species, the underlying molecular mechanisms of this activity by leaf extracts have not been studied in detail. The purpose of this study was to evaluate the cytotoxic effects of citrus leaves on five human cancer cell lines and to determine the possible mechanisms of cell death elicited by the chloroform fraction (CF) of the Dangyuja leaf. The CF of Dangyuja strongly decreased the survival rate of HeLa cells, among the tested cell lines. CF treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, resulting in the proteolytic activation of caspases and the degradation of poly (ADP-ribose) polymerase (PARP) protein. Arrested cell growth and induction of apoptosis were confirmed by flow cytometry and DNA fragmentation analysis, respectively. The major components of the CF were identified as isosinensetin, sinensetin, tetramethyl-O-isoscutellarein, nobiletin, tangeretin, and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Our results suggest that the CF of Dangyuja leaves is an excellent source of functional polymethoxylated flavones, which may help prevent cervical cancer and may potentially be a useful agent for the treatment of certain malignancies.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Citrus/química , Flavonas/química , Flavonas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fragmentação do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray , Sais de Tetrazólio , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA