Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 58(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35454345

RESUMO

Background and Objective: There is increasing interest in preventing periodontitis using natural products. The purpose of this study was to investigate the effect of Colocasia antiquorum var. esculenta (CA) varnish on the oral microbiome and alveolar bone loss in a mouse periodontitis model. Materials and Methods: Antibacterial activity against Porphyromonas gingivalis (P. gingivalis) ATCC 53978 and cell cytotoxicity using CCK-8 on L929 cells were measured. Balb/c mice were assigned into five groups (negative control, positive control, CA in drinking water, varnish, and CA varnish). P. gingivalis was administered to the mice by oral gavage three times. After sacrifice, the oral microbiome and the levels of the inflammatory cytokine IL-1ß and matrix metalloproteinase-9 were analyzed. Alveolar bone loss was measured using micro-computed tomography. Results: CA extract showed an antibacterial effect against P. gingivalis (p < 0.05) and showed no cytotoxicity at that concentration (p > 0.05). Although alpha diversity of the oral microbiome did not statistically differ between the groups (p > 0.05), the relative abundance of dominant bacteria tended to be different between the groups. The inflammatory cytokine IL-1ß was reduced in the CA varnish group (p < 0.05), and no difference was observed in MMP-9 expression and alveolar bone loss (p > 0.05). Conclusions: CA varnish did not affect the overall microflora and exhibited an anti-inflammatory effect, suggesting that it is possibility a suitable candidate for improving periodontitis.


Assuntos
Perda do Osso Alveolar , Colocasia , Microbiota , Periodontite , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Animais , Antibacterianos , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Periodontite/tratamento farmacológico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Porphyromonas gingivalis/metabolismo , Microtomografia por Raio-X
2.
Medicina (Kaunas) ; 57(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34684091

RESUMO

Background and Objectives: Periodontal disease is a chronic inflammatory disease in which gradual destruction of tissues around teeth is caused by plaque formed by pathogenic bacteria. The purpose of this study was to evaluate the potential of 75% ethanol extract of Colocasia antiquorum var. esculenta (CA) as a prophylactic and improvement agent for periodontal disease in vitro and in vivo. Materials and Methods: The antimicrobial efficacy of CA against Porphyromonas gingivalis (P. gingivalis, ATCC 33277) was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) test, and cytotoxicity was confirmed by CCK-8 assay. For the in vivo study, P. gingivalis was applied by oral gavage to BALB/c mice. Forty-two days after the first inoculation of P. gingivalis, intraoral swabs were taken for microbiome analysis, and the mice were sacrificed to evaluate the alveolar bone loss. Results: The MIC of CA against P. gingivalis was 31.3 µg/mL, the MBC was 62.5 µg/mL, with no cytotoxicity. The diversity of the oral microbiome decreased in the positive control group, while those of the VA (varnish) and VCA (varnish added with CA) groups increased as much as in the negative control group, although the alveolar bone loss was not induced in the mouse model. Conclusions: CA showed antibacterial effects in vitro, and the VA and VCA groups exhibited increased diversity in the oral microbiome, suggesting that CA has potential for improving periodontal disease.


Assuntos
Colocasia , Doenças Periodontais , Animais , Camundongos , Camundongos Endogâmicos BALB C , Doenças Periodontais/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Porphyromonas gingivalis
3.
Medicina (Kaunas) ; 57(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206271

RESUMO

Background and Objectives:Asplenium incisum, a natural plant, is known to possess numerous pharmacological and biochemical properties. However, the inhibitory effect of A. incisum against Porphyromonas gingivalis and other factors related to periodontal disease have not yet been demonstrated. This study aimed to investigate the potential of A. incisum extract as a phytotherapeutic candidate for improving periodontal diseases by assessing its antibacterial, anti-inflammatory, and anti-osteoclastogenic activities. Materials and Methods: The inhibition of proliferation of P. gingivalis by A. incisum and the sustainability of its antibacterial activity were evaluated in this study. The production of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and nitric oxide (NO) from lipopolysaccharide-stimulated RAW 264.7 cells was assessed using an enzyme-linked immunosorbent assay. To identify the anti-osteoclastogenic activity, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity analyses were performed on bone marrow macrophages. Results: The proliferation of P. gingivalis was significantly inhibited by A. incisum (p < 0.001), and the antibacterial activity was sustained for up to 3 days. A. incisum showed anti-inflammatory activities by significantly decreasing the release of TNF-α, IL-6 (p < 0.05), and NO (p < 0.01). In addition, A. incisum significantly suppressed TRAP-positive cells and TRAP activity (at 30 µg/mL, p < 0.01) without causing any cytotoxicity (p > 0.05). Conclusions:A. incisum showed antibacterial, anti-inflammatory, and anti-osteoclastogenic activities, suggesting it has strong therapeutic potential against periodontal diseases.


Assuntos
Osteoclastos , Osteogênese , Citocinas , Humanos , Inflamação/tratamento farmacológico , Porphyromonas gingivalis , Fator de Necrose Tumoral alfa
4.
Phytother Res ; 29(7): 1073-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869918

RESUMO

Bone is maintained by osteoclast-mediated resorption and osteoblast-mediated formation. Recently, anti-osteoporotic activity of Saururus chinensis extract (SCE) and anti-osteoclastogenic activity of its components have been reported, but the effect of SCE on bone formation has not been studied well. Therefore, in this study, we investigated whether Saururus chinensis SCE exhibits in vitro osteogenic and in vivo bone-forming activity. extract strongly enhanced the bone morphogenetic protein (BMP)-2-stimulated induction of alkaline phosphatase, an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. In vitro osteogenic activity of SCE was accompanied by enhanced expression of BMP-2, BMP-4, BMP-7 and BMP-9 mRNA. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of SCE. Moreover, the BMP dependency and the involvement of p38 activation in the osteogenic action of SCE were confirmed by the treatment of noggin, an antagonist of BMP. Saururus chinensis extract also exhibited to induce runt-related transcription factor 2 activation at the high concentration. Furthermore, the in vivo osteogenic activity of SCE was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its use for bone formation. In conclusion, we suggested that in vivo anti-osteoporotic activity of SCE could be because of its dual action in bone, anti-osteoclastogenic and anabolic activity.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saururaceae/química , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Phytomedicine ; 22(1): 27-35, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25636867

RESUMO

Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3ß and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin ß3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Piranos/farmacologia , Ligante RANK/metabolismo , Rubia/química , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-23509596

RESUMO

Antlers have been traditionally used for thousands of years as a natural product with medicinal and pharmaceutical properties. In developing healthy foods, Bacillus-mediated fermentation is widely used to enhance the biological activity of nutrients in foods. Recently, fermentation was shown to enhance the osteogenic activity of antlers. This study aimed to elucidate the antiresorptive activity of Bacillus-fermented antler and its mode of action. We found that Bacillus-fermented antler extract strongly inhibited osteoclast differentiation by downregulating the expression and activity of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). This extract also inhibited the activation of phospholipase C γ 2 (PLC γ 2), a signaling molecule that could regulate NFATc1 transcriptional activity. This suggested that Bacillus-fermented antler extract could inhibit PLC γ 2-NFATc1 signaling required for bone resorption and cell fusion. Consequently, Bacillus-fermented antler extract might benefit osteoclast-related disorders, including osteoporosis; furthermore, it may improve gastrointestinal activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA