Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460683

RESUMO

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

2.
Environ Toxicol Chem ; 36(6): 1473-1482, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27808432

RESUMO

Urban pest control insecticides-specifically fipronil and its 4 major degradates (fipronil sulfone, sulfide, desulfinyl, and amide), as well as imidacloprid-were monitored during drought conditions in 8 San Francisco Bay (San Francisco, CA, USA) wastewater treatment plants (WWTPs). In influent and effluent, ubiquitous detections were obtained in units of ng/L for fipronil (13-88 ng/L), fipronil sulfone (1-28 ng/L), fipronil sulfide (1-5 ng/L), and imidacloprid (58-306 ng/L). Partitioning was also investigated; in influent, 100% of imidacloprid and 62 ± 9% of total fiproles (fipronil and degradates) were present in the dissolved state, with the balance being bound to filter-removable particulates. Targeted insecticides persisted during wastewater treatment, regardless of treatment technology utilized (imidacloprid: 93 ± 17%; total fiproles: 65 ± 11% remaining), with partitioning into sludge (3.7-151.1 µg/kg dry wt as fipronil) accounting for minor losses of total fiproles entering WWTPs. The load of total fiproles was fairly consistent across the facilities but fiprole speciation varied. This first regional study on fiprole and imidacloprid occurrences in raw and treated California sewage revealed ubiquity and marked persistence to conventional treatment of both phenylpyrazole and neonicotinoid compounds. Flea and tick control agents for pets are identified as potential sources of pesticides in sewage meriting further investigation and inclusion in chemical-specific risk assessments. Environ Toxicol Chem 2017;36:1473-1482. © 2016 SETAC.


Assuntos
Imidazóis/análise , Nitrocompostos/análise , Praguicidas/análise , Pirazóis/análise , Esgotos/química , Poluentes Químicos da Água/análise , California , Cromatografia Líquida de Alta Pressão , Imidazóis/metabolismo , Imidazóis/normas , Neonicotinoides , Nitrocompostos/metabolismo , Nitrocompostos/normas , Praguicidas/metabolismo , Praguicidas/normas , Pirazóis/metabolismo , Pirazóis/normas , Controle de Qualidade , Espectrometria de Massas em Tandem/normas , Estados Unidos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA