Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557413

RESUMO

Metabolic syndrome (MetS) is known to be associated to inflammation and alteration in the hypothalamus, a brain region implicated in the control of several physiological functions, including energy homeostasis and reproduction. Previous studies demonstrated the beneficial effects of testosterone treatment (TTh) in counteracting some MetS symptoms in both animal models and clinical studies. This study investigated the effect of TTh (30 mg/kg/week for 12 weeks) on the hypothalamus in a high-fat diet (HFD)-induced animal model of MetS, utilizing quantitative RT-PCR and immunohistochemical analyses. The animal model recapitulates the human MetS features, including low testosterone/gonadotropin plasma levels. TTh significantly improved MetS-induced hypertension, visceral adipose tissue accumulation, and glucose homeostasis derangements. Within hypothalamus, TTh significantly counteracted HFD-induced inflammation, as detected in terms of expression of inflammatory markers and microglial activation. Moreover, TTh remarkably reverted the HFD-associated alterations in the expression of important regulators of energy status and reproduction, such as the melanocortin and the GnRH-controlling network. Our results suggest that TTh may exert neuroprotective effects on the HFD-related hypothalamic alterations, with positive outcomes on the circuits implicated in the control of energy metabolism and reproductive tasks, thus supporting a possible role of TTh in the clinical management of MetS.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hipotálamo/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Testosterona/farmacologia , Animais , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Coelhos
2.
Endocrinology ; 162(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247714

RESUMO

In this study, we investigated steroidogenic gene mRNA expression in human vaginas and verified the ability of human vagina smooth muscle cells (hvSMCs) to synthesize androgens from upstream precursor dehydroepiandrosterone (DHEA). As a readout for androgen receptor (AR) activation, we evaluated the mRNA expression of various androgen-dependent markers. hvSMCs were isolated from vagina tissues of women undergoing surgery for benign gynecological diseases. In these cells, we evaluated mRNA expression of several steroidogenic enzymes and sex steroid receptors using real time reverse transcription-polymerase chain reaction. Androgen production was quantified with liquid chromatography tandem-mass spectrometry (LC-MS/MS). In vaginal tissues, AR mRNA was significantly less expressed than estrogen receptor α, whereas in hvSMCs, its mRNA expression was higher than progestin and both estrogen receptors. In hvSMCs and in vaginal tissue, when compared to ovaries, the mRNA expression of proandrogenic steroidogenic enzymes (HSD3ß1/ß2, HSD17ß3/ß5), along with 5α-reductase isoforms and sulfotransferase, resulted as being more abundant. In addition, enzymes involved in androgen inactivation were less expressed than in the ovaries. The LC-MS/MS analysis revealed that, in hvSMCs, short-term DHEA supplementation increased Δ4-androstenedione levels in spent medium, while increasing testosterone and DHT secretion after longer incubation. Finally, androgenic signaling activation was evaluated through AR-dependent marker mRNA expression, after DHEA and T stimulation. This study confirmed that the human vagina is an androgen-target organ with the ability to synthesize androgens, thus providing support for the use of androgens for local symptoms of genitourinary syndrome in menopause.


Assuntos
Androgênios/metabolismo , Menopausa/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Esteroides/metabolismo , Vagina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Desidroepiandrosterona , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/citologia , Cultura Primária de Células , Testosterona , Vagina/citologia
3.
Biofactors ; 47(1): 93-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33350001

RESUMO

Phytoestrogens can control high-fat diet-induced hypothalamic inflammation that is associated with severe consequences, including obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases. However, the phytoestrogen anti-neuroinflammatory action is poorly understood. In this study, we explored the neuroprotection mediated by daidzein in hypothalamic neurons by using a membrane-based model of obesity-related neuroinflammation. To test the daidzein therapeutic potential a biohybrid membrane system, consisting of hfHypo GnRH-neurons in culture on PLGA membranes, was set up. It served as reliable in vitro tool capable to recapitulate the in vivo structure and function of GnRH hypothalamic tissue. Our findings highlighted the neuroprotective role of daidzein, being able to counteract the palmitate induced neuroinflammation. Daidzein protected hfHypo GnRH cells by downregulating cell death, proinflammatory processes, oxidative stress, and apoptosis. It also restored the proper cell morphology and functionality through a mechanism which probably involves the activation of ERß and GPR30 receptors along with the expression of GnRH peptide and KISS1R.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Hipotálamo , Isoflavonas/uso terapêutico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fitoestrógenos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Células Cultivadas , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/citologia , Membranas Artificiais , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Palmitatos/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
J Sex Med ; 13(12): 1858-1871, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27914563

RESUMO

INTRODUCTION: Female sexual response is a complex phenomenon in which psychological, neurologic, and vascular mechanisms and hormonal factors interact. During the arousal phase, they cooperate to increase genital blood flow, thus inducing engorgement of the clitoris and lubrication of the vagina. Regulation of vascular and non-vascular smooth muscle tone is the crucial event in the erectile process. Preclinical studies have suggested that nitric oxide (NO) is the main vasodilator neurotransmitter modulating, through the second messenger cyclic guanosine monophosphate (cGMP), clitoral flow vessels. AIM: To investigate the effects of sexual steroid hormones on pro-erectile and relaxant (mediated by NO and cGMP) and anti-erectile and contractile (mediated by ras homolog gene family member A [RhoA] and Rho-associated protein kinase [ROCK]) mechanisms in the clitoris using a validated animal model of female ovariectomized Sprague-Dawley rats. METHODS: Subgroups of ovariectomized rats were treated with 17ß-estradiol, progesterone, testosterone, or testosterone and letrozole for 6 weeks. The experimental groups were compared with a control group of intact rats. MAIN OUTCOME MEASURES: Sex steroids plasma levels were assessed and in vitro contractility studies were carried out in order to investigate the effect of ovariectomy and in vivo treatments on clitoris smooth muscle activity. Smooth muscle cells (SMCs) from rat clitoral biopsies were isolated and characterized. RhoA activity was determined in SMCs cell cultures. RNA from tissues and cells was analyzed by quantitative real-time RT-PCR. RESULTS: Using real-time polymerase chain reaction, testosterone treatment upregulated the expression of NO-mediated pathway genes (endothelial and neuronal NO synthase, guanylate cyclase soluble subunit-α3, guanylate cyclase soluble subunit-ß3, cGMP-dependent protein kinase 1, and phosphodiesterase type 5). Conversely, estrogen replacement upregulated the expression of calcium-sensitizing RhoA-ROCK pathway genes. In vitro contractility studies were performed on phenylephrine pre-contracted clitoris strips. Ovariectomy resulted in a decreased responsiveness to Y-27632, a ROCK inhibitor, which was fully restored by 17ß-estradiol supplementation. To further examine the effect of 17ß-estradiol on the RhoA-ROCK pathway, smooth muscle cells were isolated from rat clitoris and their migration capacity was evaluated. CONCLUSION: Collectively, these data demonstrate that testosterone improves the relaxation of vascular smooth muscle cells through the NO-cGMP pathway, and that testosterone and 17ß-estradiol are necessary to maintain a functional contractile and relaxant machinery in the clitoris. This new concept might provide support for the concomitant use of estrogen and testosterone during the treatment of sexual arousal disorders related to hormonal imbalance or insufficiency.


Assuntos
Clitóris/efeitos dos fármacos , Estradiol/farmacologia , Nitrilas/farmacologia , Testosterona/farmacologia , Triazóis/farmacologia , Amidas/farmacologia , Animais , GMP Cíclico/metabolismo , Feminino , Letrozol , Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ovariectomia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
J Sex Med ; 11(7): 1694-708, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24844317

RESUMO

INTRODUCTION: In subjects with erectile dysfunction responding poorly to sildenafil, metformin was reported to improve erections. AIMS: The aim of this study is to investigate metformin's mechanism of action on erectile function, particularly focusing on adenosine (ADO) and nitric oxide (NO) signaling in an animal model of high-fat diet (HFD)-induced metabolic syndrome. METHODS: In vitro contractility studies of penile strips. Penile expression of genes related to ADO or NO signaling was also evaluated. MAIN OUTCOME MEASURE: In vitro contractility studies were used to investigate the effect of in vivo and ex vivo metformin administration on ADO- or acetylcholine (Ach)-induced relaxation of penile strips from HFD as compared with animals fed a regular diet (RD). RESULTS: Expression of ADO receptor type 3 (A3 R), ADO deaminase (ADA), AMP deaminase type 1 (AMPD1), and 2 (AMPD2) was decreased in HFD as compared with RD. Accordingly, in HFD the ADO relaxant effect was potentiated as compared with RD (P < 0.02). In vivo metformin treatment in both RD and HFD significantly increased the ADO relaxing effect (P < 0.0001 and P < 0.01, respectively, vs. relative untreated groups) although to a different extent. In fact, the half-maximal inhibitory concentration (IC50 )/IC50 ratio in RD increased fourfold vs. HFD (RD IC50 ratio = 13.75 ± 2.96; HFD IC50 ratio = 2.85 ± 0.52). In corpora cavernosa (CC) from HFD, in vivo metformin (i) normalized A3 R, ADA, and AMPD1; (ii) further decreased AMPD2; (iii) increased dimethylarginine dimethylamino-hydrolase; and (iv) partially restored impaired Ach-induced relaxation. Ex vivo metformin time and dose dependently increased the relaxant effect of ADO in RD. The potentiating effect of metformin on ADO-induced relaxation was significantly reduced by preincubation with NO synthase inhibitor N(ω) -Nitro-L-arginine methyl ester hydrochloride (L-NAME). Interestingly, in vivo testosterone supplementation in HFD rabbits (i) increased penile expression of endothelial NO synthase and AMPD2 and (ii) restored metformin's potentiating effect on ADO-induced relaxation up to RD level. CONCLUSION: Metformin in vivo and ex vivo increases ADO signaling in CC, most probably interfering with NO formation and ADO breakdown.


Assuntos
Adenosina/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Ereção Peniana/efeitos dos fármacos , AMP Desaminase/metabolismo , Animais , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Disfunção Erétil/tratamento farmacológico , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Pênis/efeitos dos fármacos , Pênis/metabolismo , Coelhos , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/uso terapêutico
6.
J Endocrinol ; 212(1): 71-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22010203

RESUMO

Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation. The mRNA expression of several proinflammatory (IL8, IL6, IL1ß, and TNFα), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR γt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFß, SM22α, αSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.


Assuntos
Androgênios/uso terapêutico , Ácido Quenodesoxicólico/análogos & derivados , Síndrome Metabólica/complicações , Prostatite/prevenção & controle , Testosterona/uso terapêutico , Animais , Biomarcadores/metabolismo , Ácido Quenodesoxicólico/uso terapêutico , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estradiol/sangue , Fibrose/metabolismo , Masculino , Próstata/metabolismo , Próstata/patologia , Prostatite/etiologia , Prostatite/metabolismo , Prostatite/patologia , RNA Mensageiro/metabolismo , Coelhos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Testosterona/sangue
7.
J Sex Med ; 7(8): 2698-713, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20412431

RESUMO

INTRODUCTION: In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. AIM: To investigate the effects of changing sex steroids on bladder smooth muscle. METHODS: ER α, ER ß, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. MAIN OUTCOME MEASURES: The effects of classical (ER α, ER ß) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 ß-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. RESULTS: Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 ß-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. CONCLUSION: Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway.


Assuntos
Músculo Liso/fisiopatologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/fisiopatologia , RNA Mensageiro/genética , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiopatologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia , Androgênios/sangue , Animais , Aromatase/genética , Aromatase/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/fisiologia , Estrogênios/sangue , Genitália Masculina/fisiopatologia , Humanos , Hipogonadismo/genética , Hipogonadismo/fisiopatologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microscopia Confocal , Obesidade/genética , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Testosterona/sangue , Regulação para Cima/genética , Regulação para Cima/fisiologia
8.
J Sex Med ; 6(8): 2173-86, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19453906

RESUMO

INTRODUCTION: We have previously demonstrated that oxytocin (OT) and endothelin-1 (ET-1) peripherally regulate epididymal motility in an estrogen-dependent way. Because RhoA/Rho-kinase (ROCK) pathway is a contractile effector downstream to both OT and ET-1 receptors, we hypothesized an estrogenic modulation of OT- and ET-1-induced contraction through the up-regulation of RhoA/ROCK signaling. AIM: To evaluate the effect of changing endocrine milieu on RhoA/ROCK pathway in the epididymis. METHODS: We induced a pharmacological hypogonadotropic hypogonadism in rabbits and replaced hypogonadal animals with different sex steroids (testosterone, T, or estradiol valerate, [E(2v)]). Effects of estrogen deprivation were also evaluated in rabbits chronically treated with the P450-aromatase inhibitor letrozole. An "in vitro" model of human epididymal smooth muscle cells was established and stimulated with sex hormones (72 hours). Protein and mRNA expression and functional activity of RhoA/ROCK signaling were studied by quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, western blot analysis, cell migration and by "in vitro" contractility studies using the ROCK inhibitor Y-27632. MAIN OUTCOME MEASURES: Effects of sex steroids on expression and functional activation of RhoA/ROCK signaling in rabbit epididymis and human epididymal smooth muscle cells. RESULTS: The relaxant effect of Y-27632 on ET-1-pre-contracted epididymal strips was significantly reduced in hypogonadal rabbits, as well as in letrozole-treated animals. T supplementation normalized T plasma levels, but not Y-27632 epididymal strip sensitivity. E(2)v not only completely restored Y-27632 responsiveness but even amplified it, indicating an estrogenic up-regulation of RhoA/ROCK pathway. Accordingly, ROCK1 protein and gene expressions were strongly induced by E(2)v but not by T. The estrogen-induced up-regulation of RhoA/ROCK signaling was confirmed in human epididymal smooth muscle cells. CONCLUSIONS: Our results suggest that estrogens regulate epididymal motility by increasing RhoA/ROCK signaling, and therefore calcium sensitivity, which tunes up responsiveness to contractile factors.


Assuntos
Epididimo/efeitos dos fármacos , Estrogênios , Doenças dos Genitais Masculinos , Hipogonadismo , Transdução de Sinais , Quinases Associadas a rho/biossíntese , Proteína rhoA de Ligação ao GTP/biossíntese , Animais , Sistema Endócrino , Endotelina-1 , Receptor beta de Estrogênio/metabolismo , Humanos , Letrozol , Masculino , Nitrilas , Coelhos , Testosterona/sangue , Triazóis
9.
J Androl ; 29(1): 70-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17699803

RESUMO

Spontaneously hypertensive rats (SHR) are characterized by impaired erectile function and overactivity of the procontractile RhoA/Rho-associated, coiled-coil-containing protein kinase (RhoA/ROCK) pathway, as compared with their normotensive counterpart, Wistar-Kyoto rats. By measuring the intracavernous pressure:mean arterial pressure (ICP:MAP) ratio after electrostimulation of the cavernous nerve, we confirmed these findings and showed that responsiveness to sildenafil (25 mg/kg by oral gavage) also is hampered in SHR. A 2-week treatment with atorvastatin (5 and 30 mg/kg) improved the sildenafil-induced ICP:MAP increase and normalized RhoA and ROCK2 overexpression in SHR corpora cavernosa (CC). Conversely, other genes, neuronal nitric oxide synthase (NOS), endothelial NOS, and phosphodiesterase 5, were unaffected. In human fetal smooth muscle cells derived from CC (hfPSMC), atorvastatin inhibited RhoA membrane translocation and ROCK activity, as well as RhoA-dependent biologic functions like cell migration and cell proliferation. Atorvastatin's effect on migration was rescued in a dose-dependent manner by geranylgeranyl pyrophosphate, suggesting the involvement of RhoA geranylgeranylation. In hfPSMC, atorvastatin decreased the expression of RhoA-dependent genes such as ROCK2, desmin, alpha-smooth muscle actin, SM22alpha, and myocardin. In contrast to atorvastatin, elocalcitol, a vitamin D analog that also interferes with RhoA activation in SHR bladder, was unable to restore penile responsiveness to sildenafil. In conclusion, atorvastatin, but not elocalcitol, ameliorates sildenafil-induced penile erections in SHR, likely by interfering with RhoA/ROCK signaling within the penis.


Assuntos
Calcitriol/análogos & derivados , Disfunção Erétil/tratamento farmacológico , Ácidos Heptanoicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Pirróis/farmacologia , Sulfonas/farmacologia , Animais , Atorvastatina , Calcitriol/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Sinergismo Farmacológico , Disfunção Erétil/complicações , Disfunção Erétil/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Purinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Citrato de Sildenafila , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Eur Urol ; 47(3): 409-16; discussion 416, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15716209

RESUMO

OBJECTIVES: To investigate the effect of testosterone on PDE5 expression and PDE5 inhibitor tadalafil in vivo responsiveness in a rat model. METHODS: PDE5 expression was localized by immunohistochemistry in the rat corpus cavernosum (CC) and quantified by both real-time RT-PCR and Western blot analysis in several tissues. In the in vivo study, control, castrated and testosterone (T) supplemented castrated rats were treated with acute or chronic oral tadalafil. Erectile function was evaluated by monitoring intracavernous pressure (ICP) following electro-stimulation (ES) of the cavernous nerve and intracavernous injection of NO donor, sodium nitroprusside (SNP). RESULTS: Rat CC expressed the highest PDE5 mRNA level. PDE5 was specifically immunolocalized in endothelial and smooth muscle cells. Surgical castration induced a significant reduction of PDE5 gene and protein expression (p<0.05), and ES response at all stimulation frequencies (p<0.001). T supplementation completely restored PDE5 expression, erectile response to ES and responsiveness to PDE5 inhibitor. Both acute and chronic tadalafil treatment were ineffective in ameliorating the ES response in castrated rats. Injection of increasing concentrations of SNP in castrated rats resulted in a statistically significant increase in ICP/MAP ratio as that observed in intact rats. In addition, tadalafil did not amplify the SNP effect in castrated rats at all the doses tested (0.06-6 nmoles). CONCLUSIONS: Our findings demonstrate that testosterone positively regulates PDE5 expression and in vivo responsiveness to PDE5 inhibitor, tadalafil, in the rat CC.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Carbolinas/farmacologia , Pênis/efeitos dos fármacos , Pênis/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Testosterona/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Castração , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Modelos Animais de Doenças , Feminino , Masculino , Nitroprussiato , Ereção Peniana/efeitos dos fármacos , Ereção Peniana/fisiologia , Ratos , Ratos Sprague-Dawley , Valores de Referência , Tadalafila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA