Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Monit ; 14(11): 2886-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22986574

RESUMO

Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a combination of two methods, penalized spline regression and geostatistics could provide an efficient approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an 80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to predict TPH contamination in soil by combining lab TPH values of 46 contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples. The r(2), RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log(10) mg kg(-1), and 0.010 log(10) mg kg(-1), respectively. Subsequently, the penalized spline model was used to predict soil TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly chosen validation subset (n = 10) from the 128 samples, the penalized spline model performed satisfactorily (r(2) = 0.70; residual prediction deviation = 2.0). The same validation subset was used to assess point kriging interpolation after the remaining 118 predictions were used to produce an experimental semivariogram and map. The experimental semivariogram was fitted with an exponential model which revealed strong spatial dependence among soil TPH [r(2) = 0.76, nugget = 0.001 (log(10) mg kg(-1))(2), and sill 1.044 (log(10) mg kg(-1))(2)]. Kriging interpolation adequately interpolated TPH with r(2) and RMSE values of 0.88 and 0.312 log(10) mg kg(-1), respectively. Furthermore, in the kriged map, TPH distribution matched with the expected TPH variability of the study site. Since the combined use of VisNIR prediction and geostatistics was promising to identify the spatial patterns of TPH contamination in soils, future research is warranted to evaluate the approach for mapping spatial variability of petroleum contaminated soils.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Petróleo/análise , Poluentes do Solo/análise , Poluição por Petróleo/estatística & dados numéricos , Solo/química , Análise Espacial , Espectroscopia de Luz Próxima ao Infravermelho
2.
J Environ Qual ; 39(4): 1378-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20830926

RESUMO

In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.


Assuntos
Monitoramento Ambiental , Petróleo/análise , Poluentes do Solo/química , Solo/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Modelos Logísticos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA