Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0197213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771932

RESUMO

Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. CONCLUSION: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.


Assuntos
Meios de Contraste , Gadolínio DTPA , Fígado , Imageamento por Ressonância Magnética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Avaliação Pré-Clínica de Medicamentos , Gadolínio DTPA/farmacocinética , Gadolínio DTPA/farmacologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
2.
Curr Protoc Toxicol ; Chapter 23: Unit 23.5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23169270

RESUMO

The use of plasma membrane vesicles that overexpress the bile salt export pump (BSEP) or multidrug resistance-associated protein 2, 3, or 4 (MRP2-4) with an in vitro vacuum filtration system offers a rapid and reliable means for screening drug candidates for their effects on transporter function in hepatocytes and thus their potential for causing drug-induced liver injury (DILI). Comparison of transporter activity in the presence and absence of ATP allows for determination of a specific assay window for each transporter. This window is used to determine the degree to which each test compound inhibits transporter activity. This assay battery is helpful for prioritizing and rank-ordering compounds within a chemical series with respect to each other and in the context of known inhibitors of transporter activity and/or liver injury. This model can be used to influence the drug development process at an early stage and provide rapid feedback regarding the selection of compounds for advancement to in vivo safety evaluations. A detailed protocol for the high-throughput assessment of ABC transporter function is provided, including specific recommendations for curve-fitting to help ensure consistent results.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Bioensaio/métodos , Vesículas Transportadoras/fisiologia , Membrana Celular , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Modelos Lineares , Contagem de Cintilação
3.
Toxicol Sci ; 118(2): 485-500, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20829430

RESUMO

The bile salt export pump (BSEP) is an efflux transporter, driving the elimination of endobiotic and xenobiotic substrates from hepatocytes into the bile. More specifically, it is responsible for the elimination of monovalent, conjugated bile salts, with little or no assistance from other apical transporters. Disruption of BSEP activity through genetic disorders is known to manifest in clinical liver injury such as progressive familial intrahepatic cholestasis type 2. Drug-induced disruption of BSEP is hypothesized to play a role in the development of liver injury for several marketed or withdrawn therapeutics. Unfortunately, preclinical animal models have been poor predictors of the liver injury associated with BSEP interference observed for humans, possibly because of interspecies differences in bile acid composition, differences in hepatobiliary transporter modulation or constitutive expression, as well as other mechanisms. Thus, a BSEP-mediated liver liability may go undetected until the later stages of drug development, such as during clinical trials or even postlicensing. In the absence of a relevant preclinical test system for BSEP-mediated liver injury, the toxicological relevance of available in vitro models to human health rely on the use of benchmark compounds with known clinical outcomes, such as marketed or withdrawn drugs. In this study, membrane vesicles harvested from BSEP-transfected insect cells were used to assess the activity of more than 200 benchmark compounds to thoroughly investigate the relationship between interference with BSEP function and liver injury. The data suggest a relatively strong association between the pharmacological interference with BSEP function and human hepatotoxicity. Although the most accurate translation of risk would incorporate pharmacological potency, pharmacokinetics, clearance mechanisms, tissue distribution, physicochemical properties, indication, and other drug attributes, the additional understanding of a compound's potency for BSEP interference should help to limit or avoid BSEP-related liver liabilities in humans that are not often detected by standard preclinical animal models.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Xenobióticos/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bioensaio , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Reprodutibilidade dos Testes , Spodoptera/citologia , Transfecção
4.
Expert Opin Drug Metab Toxicol ; 2(5): 687-96, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17014389

RESUMO

Drug-induced phospholipidosis is the cytoplasmic accumulation of phospholipids as a result of xenobiotic exposure. This accumulation results in a unique histological effect in cells noted as electron-dense lamellar inclusions or whorls in the cytoplasm when observed with transmission electron microscopy. Electron microscopy has been the widely accepted standard for classification of the phospholipidosis effect. Molecules that have been prone to induce such an effect are made up of a lipophilic region and a positively charged region. Phospholipidosis has most commonly been associated with drugs that are cationic, amphiphilic drugs and can occur in a variety of tissues. Although phospholipidosis is not considered adverse in isolation, depending on the tissue affected or the occasional circumstance of concurrent toxicity, phospholipidosis can be perplexing if identified in early drug development. In most circumstances, characterisation of the effect with in vivo studies allows for determination of exposure and the magnitude of the effect. On occasion in drug development, there may be an interest to screen early stage compounds to minimise phospholipidosis. In such circumstances, in silico and in vitro assays can be employed in a strategy with in vivo assessments. In addition, there may be an interest to monitor for the potential development of phospholipidosis in longer-term animal studies. In such cases, biomarker approaches could be used. The challenge in the overall assessment of phospholipidosis remains the question of the possible relevance to any toxicity, and, therefore, any screening approach, while assessing the potential to induce phospholipidosis, must be considered in relation to prediction of findings in vivo. The status of current assays and biomarkers is presented with strategies for screening.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , Animais , Bioensaio , Biomarcadores , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA