Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 238: 124682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524619

RESUMO

Plant growth-promoting bacteria (PGPB) are considered a promising tool to improve biomass production and water remediation by the aquatic plant, duckweed; however, no effective methodology is available to utilize PGPB in large hydroponic systems. In this study, we proposed a two-step cultivation process, which comprised of a "colonization step" and a "mass cultivation step," and examined its efficacy in both bucket-scale and flask-scale cultivation experiments. We showed that in the outdoor bucket-scale experiments using three kinds of environmental water, plants cultured through the two-step cultivation method with the PGPB strain, Acinetobacter calcoaceticus P23, yielded 1.9 to 2.3 times more biomass than the control (without PGPB inoculation). The greater nitrogen and phosphorus removals compared to control were also attained, indicating that this strategy is useful for accelerating nutrient removal by duckweed. Flask-scale experiments using non-sterile pond water revealed that inoculation of strain P23 altered duckweed surface microbial community structures, and the beneficial effects of the inoculated strain P23 could last for 5-10 d. The loss of the duckweed growth-promoting effect was noticeable when the colonization of strain P23 decreased in the plant. These observations suggest that the stable colonization of the plant with PGPB is the key for maintaining the accelerated duckweed growth and nutrient removal in this cultivation method. Overall, our results suggest the possibility of an improved duckweed production using a two-step cultivation process with PGPB.


Assuntos
Acinetobacter calcoaceticus/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/microbiologia , Hidroponia/métodos , Microbiota/fisiologia , Biomassa , Água Doce , Nitrogênio/análise , Nutrientes , Fósforo/análise , Desenvolvimento Vegetal , Purificação da Água/métodos
2.
J Microbiol Biotechnol ; 21(9): 995-1000, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21952378

RESUMO

The bioremediation potential of crude oil by Polyporus sp. S133 pre-grown in wood meal was investigated in two separate experiment trials; liquid medium and soil. The effect of three nutrients (glucose, polypeptone, and wood meal), oxygen flow, and some absorbent on the efficiency of the process was also evaluated. Degradation of crude oil in soil was significantly increased with an addition of oxygen flow and some absorbent (kapok and pulp). The highest degradation rate of crude oil was 93% in the soil with an addition of 10% kapok. The present study clearly demonstrates that, if suitably developed, Polyporus sp. S133 could be used to remediate soil contaminated with crude oil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Petróleo/metabolismo , Polyporus/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/análise , Petróleo/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo
3.
Environ Sci Technol ; 45(15): 6524-30, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21736332

RESUMO

We investigated biodegradation of technical nonylphenol (tNP) in Phragmites australis rhizosphere sediment by conducting degradation experiments using sediments spiked with tNP. Accelerated tNP removal was observed in P. australis rhizosphere sediment, whereas tNP persisted in unvegetated sediment without plants and in autoclaved sediment with sterile plants, suggesting that the accelerated tNP removal resulted largely from tNP biodegradation by rhizosphere bacteria. Three bacterial strains, Stenotrophomonas sp. strain IT-1 and Sphingobium spp. strains IT-4 and IT-5, isolated from the rhizosphere were capable of utilizing tNP and 4-tert-octylphenol as a sole carbon source via type II ipso-substitution. Oxygen from P. australis roots, by creating highly oxygenated conditions in the sediment, stimulated cell growth and the tNP-degrading activity of the three strains. Moreover, organic compounds from P. australis roots functioned as carbon and energy sources for two strains, IT-4 and IT-5, supporting cell growth and tNP-degrading activity. Thus, P. australis roots elevated the cell growth and tNP-degrading activity of the three bacterial strains, leading to accelerated tNP removal. These results demonstrate that rhizoremediation of tNP-contaminated sediments using P. australis can be an effective strategy.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fenóis/metabolismo , Poaceae/metabolismo , Rizosfera , Aerobiose , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo
4.
Environ Microbiol ; 5(6): 517-22, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755719

RESUMO

Behaviour of microbial populations responsible for degrading n-alkanes, a major component of crude oil, was monitored during crude oil degradation in a sea-water microcosm by both traditional colony culturing and molecular techniques. A DNA extraction method applicable to crude oil-amended sea-water samples was developed to obtain DNA applicable to most probable number (MPN) polymerase chain reaction (PCR). The population of alkane-degrading bacteria responsible for degradation of n-alkanes in a crude oil-amended microcosm altered, so that shorter alkanes were degraded first by alkane-degrading bacteria possessing alkane hydroxylase genes from group I (Kohno et al., 2002, Microb Environ 17: 114-121) and longer ones afterwards by those possessing alkane hydroxylase genes from group II. Thus, the degradation mechanism of the n-alkanes can be clarified during crude oil degradation. Application of the method of detecting different types of alkane-catabolic genes, as shown in the present study, enabled bacterial groups preferring alkanes of either shorter or longer chain lengths to be enumerated selectively.


Assuntos
Alcanos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Citocromo P-450 CYP4A/genética , Petróleo/metabolismo , Biodegradação Ambiental , Citocromo P-450 CYP4A/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , Reação em Cadeia da Polimerase , Água do Mar , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA