Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 238: 124682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524619

RESUMO

Plant growth-promoting bacteria (PGPB) are considered a promising tool to improve biomass production and water remediation by the aquatic plant, duckweed; however, no effective methodology is available to utilize PGPB in large hydroponic systems. In this study, we proposed a two-step cultivation process, which comprised of a "colonization step" and a "mass cultivation step," and examined its efficacy in both bucket-scale and flask-scale cultivation experiments. We showed that in the outdoor bucket-scale experiments using three kinds of environmental water, plants cultured through the two-step cultivation method with the PGPB strain, Acinetobacter calcoaceticus P23, yielded 1.9 to 2.3 times more biomass than the control (without PGPB inoculation). The greater nitrogen and phosphorus removals compared to control were also attained, indicating that this strategy is useful for accelerating nutrient removal by duckweed. Flask-scale experiments using non-sterile pond water revealed that inoculation of strain P23 altered duckweed surface microbial community structures, and the beneficial effects of the inoculated strain P23 could last for 5-10 d. The loss of the duckweed growth-promoting effect was noticeable when the colonization of strain P23 decreased in the plant. These observations suggest that the stable colonization of the plant with PGPB is the key for maintaining the accelerated duckweed growth and nutrient removal in this cultivation method. Overall, our results suggest the possibility of an improved duckweed production using a two-step cultivation process with PGPB.


Assuntos
Acinetobacter calcoaceticus/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/microbiologia , Hidroponia/métodos , Microbiota/fisiologia , Biomassa , Água Doce , Nitrogênio/análise , Nutrientes , Fósforo/análise , Desenvolvimento Vegetal , Purificação da Água/métodos
2.
Biosci Biotechnol Biochem ; 78(8): 1310-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25130731

RESUMO

The marine red alga genus Laurencia is one of the richest producers of unique brominated compounds in the marine environment. The cDNAs for two Laurencia nipponica vanadium-dependent bromoperoxidases (LnVBPO1 and LnVBPO2) were cloned and expressed in Escherichia coli. Enzyme assays of recombinant LnVBPO1 and LnVBPO2 using monochlorodimedone revealed that they were thermolabile but their Km values for Br(-) were significantly lower than other red algal VBPOs. The bromination reaction was also assessed using laurediol, the predicted natural precursor of the brominated ether laurencin. Laurediol, protected by trimethylsilyl at the enyne, was converted to deacetyllaurencin by the LnVBPOs, which was confirmed by tandem mass spectrometry. Native LnVBPO partially purified from algal bodies was active, suggesting that LnVBPO is functional in vivo. These results contributed to our knowledge of the biosynthesis of Laurencia brominated metabolites.


Assuntos
DNA Complementar/genética , Laurencia/enzimologia , Laurencia/genética , Peroxidases/genética , Peroxidases/metabolismo , Vanádio/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Halogenação , Modelos Moleculares , Dados de Sequência Molecular , Peroxidases/química , Peroxidases/isolamento & purificação , Conformação Proteica
3.
Biosci Biotechnol Biochem ; 72(8): 2061-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18685212

RESUMO

Biosurfactant production by Pichia anomala PY1, a thermotorelant strain isolated from fermented food, was examined as grown in media containing various carbon and nitrogen sources. The optimal conditions for biosurfactant production included 4% soybean oil as carbon source at pH 5.5 at 30 degrees C for 7 d. Under these conditions, the surface tension of the medium decreased to 28 mN/m with oil displacement measured at 69.43 cm(2). Comparative studies of biosurfactant production in media containing glucose or soybean oil were performed. The biosurfactants obtained were isolated and purified by chromatographic methods. The molecular weights of samples were further investigated by mass spectrometry. In medium containing glucose, biosurfactants of molecular weights of 675, 691, and 707 were obtained, while those isolated from medium containing soybean oil were of molecular weights of 658, 675, and 691. These results reveal that sophorolipid compounds containing fatty acids of C20 and C18:1 were produced from both media.


Assuntos
Lipídeos/biossíntese , Pichia/metabolismo , Tensoativos/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/química , Espectrometria de Massas , Nitrogênio/metabolismo , Óleo de Soja , Tensoativos/química , Temperatura
4.
J Gen Appl Microbiol ; 52(4): 215-22, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17116970

RESUMO

Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively.


Assuntos
Glicolipídeos/biossíntese , Óleos de Plantas/metabolismo , Pseudomonas aeruginosa/metabolismo , Tensoativos/metabolismo , Óleo de Palmeira , Pseudomonas aeruginosa/crescimento & desenvolvimento
5.
Biosci Biotechnol Biochem ; 68(3): 557-64, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15056887

RESUMO

Two bacterial strains, 127W and T102, were isolated from anoxic crude oil tank sludge as effective degraders of dibenzothiophene (DBT), a model sulfur containing heterocyclic aromatic compound in crude oil. Strain 127W was more tolerant to oxygen limitation than T102 and was capable of degrading two- and three-ring polycyclic and heterocyclic aromatic compounds under both aerobic and low oxygen conditions. Strain 127W degraded 0.082, 0.055, and 0.064 mM of DBT, naphthalene, and anthracene, respectively, in one week with dissolved oxygen < or =0.2ppm (0.006 mM). Degradation by 127W cell-free extracts for DBT was increased by addition of sodium hydrogencarbonate under this oxygen concentration. Phylogenetic analysis of the 16S rRNA gene sequence and physiological characteristics indicate that the strains 127W and T102 belong to new species of the genus Xanthobacter and Pseudomonas stutzeri, respectively. We propose X. polyaromaticivorans sp. nov. 127W.


Assuntos
Compostos Heterocíclicos/metabolismo , Petróleo/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Xanthobacter/isolamento & purificação , Xanthobacter/metabolismo , Biodegradação Ambiental , Microscopia Eletrônica de Varredura , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bicarbonato de Sódio/metabolismo , Xanthobacter/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA