Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 511: 1-9, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27480498

RESUMO

To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [(3)H]myristic acid or [(3)H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.


Assuntos
Proteínas de Transporte/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/biossíntese , DNA Complementar/metabolismo , Endodesoxirribonucleases/biossíntese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/biossíntese , Lipoilação , Ácido Palmítico/metabolismo , Acilação , Animais , Células COS , Proteínas de Transporte/química , Sistema Livre de Células , Chlorocebus aethiops , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , DNA Complementar/química , Proteínas de Ligação a DNA , Endodesoxirribonucleases/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Humanos
2.
Anal Biochem ; 464: 83-93, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25043870

RESUMO

To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources.


Assuntos
DNA/química , Ácido Mirístico/química , Proteínas/análise , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Membranas Artificiais , Polivinil/química , Proteínas/química
3.
PLoS One ; 8(11): e78235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223779

RESUMO

N-myristoylation of eukaryotic cellular proteins has been recognized as a modification that occurs mainly on cytoplasmic proteins. In this study, we examined the membrane localization, membrane integration, and intracellular localization of four recently identified human N-myristoylated proteins with predicted transmembrane domains. As a result, it was found that protein Lunapark, the human ortholog of yeast protein Lnp1p that has recently been found to be involved in network formation of the endoplasmic reticulum (ER), is an N-myristoylated polytopic integral membrane protein. Analysis of tumor necrosis factor-fusion proteins with each of the two putative transmembrane domains and their flanking regions of protein Lunapark revealed that transmembrane domain 1 and 2 functioned as type II signal anchor sequence and stop transfer sequence, respectively, and together generated a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. Immunofluorescence staining of HEK293T cells transfected with a cDNA encoding protein Lunapark tagged with FLAG-tag at its C-terminus revealed that overexpressed protein Lunapark localized mainly to the peripheral ER and induced the formation of large polygonal tubular structures. Morphological changes in the ER induced by overexpressed protein Lunapark were significantly inhibited by the inhibition of protein N-myristoylation by means of replacing Gly2 with Ala. These results indicated that protein N-myristoylation plays a critical role in the ER morphological change induced by overexpression of protein Lunapark.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/metabolismo , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Vetores Genéticos , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transfecção , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA