Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 101-105, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150536

RESUMO

Metal organic frameworks (MOFs), a class of porous crystalline materials consisting of metal-based nodes and organic linkers, have emerged as a promising platform for photocatalysis due to their ultrahigh functional surface area, customizable topologies, and tunable energetics. While interesting photochemistry has been reported, the related photoinduced structural dynamics of MOFs remains unclear. The consensus is that the coordination bonds between MOF nodes and linkers are considered static during photoexcitation, while the open-metal sites on the nodes are taken as the key active sites for catalysis. In this work, through a complementary time-resolved visible and infrared (IR) spectroscopic investigation, along with computational studies, we report for the first time light-induced structural bond dissociation (COO-M) and reformation in an iron-oxo framework, MIL-101(Fe). The probed excited state displayed ligand-to-metal charge transfer (LMCT) characteristics and exhibited a ca. 30 µs lifetime. The incredibly long excited-state lifetime led us to probe potential structural rearrangements that facilitated charge separation in MIL-101(Fe). By probing the vibrational fingerprints of the carboxylate linker upon LMCT photoexcitation, we observed the reversible transition of the carboxylate-Fe bond from a bidentate bridging mode to a monodentate mode, indicating the partial dissociation of the carboxylate ligand. Importantly, the bidentate configuration is recovered on the same time scale of the excited state lifetimes as probed via visible transient absorption spectroscopy. The elucidated photoinduced configurational dynamics provides a foundation for an in-depth understanding of MOF-based photocatalytic mechanisms.

2.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240055

RESUMO

In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Fibrose Cística/tratamento farmacológico , Alginatos/metabolismo , Biofilmes , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos/uso terapêutico , Pulmão , Infecções por Pseudomonas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA