Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(8): 4295-4307, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828299

RESUMO

Disruption of leptin (LEP) signaling in the hypothalamus caused by type 2 diabetes (T2D) can impair appetite regulation. The aim of this study was to investigate whether the improvement in appetite regulation induced by high-intensity interval training (HIIT) in rats with T2D can be mediated by LEP signaling. In this study, 20 male Wister rats were randomly assigned to one of four groups: CO (non-type 2 diabetes control), T2D (type 2 diabetes), EX (non-type 2 diabetes exercise), and T2D + EX (type 2 diabetes + exercise).To induce T2D, a combination of a high-fat diet for 2 months and a single dose of streptozotocin (35 mg/kg) was administered. Rats in the EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of their maximum velocity (Vmax). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum levels of insulin (INS) and LEP (LEPS) as well as hypothalamic expression of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), neuropeptide Y (NPY), agouti-related protein (AGRP), pro-opiomelanocortin cocaine (POMC), amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1) were assessed. ANOVA and Tukey post hoc tests were used to compare the results between the groups. The levels of LEPS and INS, as well as the levels of LEP-R, JAK-2, STAT-3, POMC, and CART in the hypothalamus were found to be higher in the T2D + EX group compared to the T2D group. On the other hand, the levels of HOMA-IR, NPY, AGRP, SOCS3, and FOXO1 were lower in the T2D + EX group compared to the T2D group (P < 0.0001). The findings of this study suggest that HIIT may improve appetite regulation in rats with T2D, and LEP signaling may play a crucial role in this improvement. Graphical abstract (leptin signaling in the hypothalamus), Leptin (LEP), Leptin receptor (LEP-R), Janus kinase 2 (JAK2), Signal transducer and activator of transcription 3 (STAT3), expressing Neuropeptide Y (NPY), Agouti-related protein (AGRP), anorexigenic neurons (expressing pro-opiomelanocortin cocaine (POMC), Amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1).


Assuntos
Cocaína , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Ratos , Masculino , Animais , Proteína Relacionada com Agouti/metabolismo , Neuropeptídeo Y/metabolismo , Leptina/metabolismo , Regulação do Apetite/fisiologia , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Forkhead Box O1/metabolismo , Janus Quinase 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Hipotálamo/metabolismo , Insulina/metabolismo , Anfetaminas/metabolismo , Cocaína/metabolismo , Citocinas/metabolismo
2.
Nutrients ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014763

RESUMO

The impact of glucose and fructose supplementation on acute cardiac effects during cardiopulmonary exercise testing (CPET) is a topic that is rarely investigated. The aim of the presented secondary outcome analysis of a double-blind, randomized crossover-controlled trial was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru), and sucralose on electrocardiogram (ECG), heart rate variability (HRV), premature ventricular complexes (PVCs), and heart rate turn points (HRTP) during CPET. Fourteen healthy individuals (age 25.4 ± 2.5 years, body mass index (BMI) 23.7 ± 1.7 kg/m2, body mass (BM) of 76.3 ± 12.3 kg) participated in this study, of which 12 were included for analysis. Participants received 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose dissolved in 300 mL 30 min prior to each exercise session. No relevant clinical pathology or significant inter-individual differences between our participants could be revealed for baseline ECG parameters, such as heart rate (HR) (mean HR 70 ± 16 bpm), PQ interval (146 ± 20 ms), QRS interval (87 ± 16 ms) and the QT (405 ± 39 ms), and QTc interval (431 ± 15 ms). We found preserved cardiac autonomic function by analyzing the acute effects of different Glu, Fru, GluFru, or sucralose supplementation on cardiac autonomic function by Schellong-1 testing. SDNN and RMSSD revealed normal sympathetic and parasympathetic activities displaying a balanced system of cardiac autonomic regulation across our participating subjects with no impact on the metabolism. During CPET performance analyses, HRV values did not indicate significant changes between the ingested drinks within the different time points. Comparing the HRTP of the CPET with endurance testing by variable metabolic conditions, no significant differences were found between the HRTP of the CPET data (170 ± 12 bpm), Glu (171 ± 10 bpm), Fru (171 ± 9 bpm), GluFru (172 ± 9 bpm), and sucralose (170 ± 8 bpm) (p = 0.83). Additionally, the obtained time to reach HRTP did not significantly differ between Glu (202 ± 75 s), Fru (190 ± 88 s), GluFru (210 ± 89 s), and sucralose (190 ± 34 s) (p = 0.59). The significance of this study lies in evaluating the varying metabolic conditions on cardiac autonomic modulation in young healthy individuals. In contrast, our participants showed comparable cardiac autonomic responses determined by ECG and CPET.


Assuntos
Frutose , Glucose , Adulto , Anaerobiose , Suplementos Nutricionais , Eletrocardiografia , Frutose/metabolismo , Glucose/metabolismo , Frequência Cardíaca , Humanos , Adulto Jovem
3.
Nutrients ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34836350

RESUMO

The aim of this study was to investigate the impact of glucose (Glu), fructose (Fru), glucose and fructose (GluFru) and sucralose on blood glucose response in healthy individuals. Fifteen healthy individuals (five females, age of 25.4 ± 2.5 years, BMI of 23.7 ± 1.7 kg/m2 with a body mass (BM) of 76.3 ± 12.3 kg) participated in this double-blind randomized crossover placebo-controlled trial. Participants received a mixture of 300 mL of water with 1 g/kg BM of Glu, 1 g/kg BM of Fru, 0.5 g/kg BM of GluFru (each), and 0.2 g sucralose as a placebo. Peak BG values Glu were reached after 40 ± 13 min (peak BG: 141 ± 20 mg/dL), for Fru after 36 ± 22 min (peak BG: 98 ± 7 mg/dL), for GluFru after 29 ± 8 min (BG 128 ± 18 mg/dL), and sucralose after 34 ± 27 min (peak BG: 83 ± 5 mg/dL). Significant differences regarding the time until peak BG were found only between Glu and GluFru supplementation (p = 0.02). Peak blood glucose levels were significantly lower following the ingestion of Fru compared to the supplementation of Glu and GluFru (p < 0.0001) while Glu and GluFru supplementation showed no difference in peak values (p = 0.23). All conditions led to a significantly higher peak BG value compared to sucralose (p < 0.0001). Blood lactate increased in Glu (p = 0.002), Fru and GluFru (both p < 0.0001), whereas sucralose did not increase compared to the baseline (p = 0.051). Insulin levels were significantly higher in all conditions at peak compared to sucralose (p < 0.0001). The findings of this study prove the feasibility of combined carbohydrate supplementations for many applications in diabetic or healthy exercise cohorts.


Assuntos
Açúcares da Dieta/administração & dosagem , Suplementos Nutricionais , Frutose/administração & dosagem , Glucose/administração & dosagem , Sacarose/análogos & derivados , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Ingestão de Energia/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Ácido Láctico/sangue , Masculino , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Adulto Jovem
4.
Can J Diabetes ; 44(8): 697-700, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32565070

RESUMO

OBJECTIVES: Individuals with type 1 diabetes try to manage the risk of exercise-induced hypoglycemia by either pre-exercise/pre-meal bolus insulin dose reductions and/or consuming additional carbohydrates during exercise. Both strategies have proven to be effective in offsetting hypoglycemia, but it remains unclear which one is more beneficial. The aim of this study was to assess the efficacy of carbohydrate supplementation vs bolus insulin dose reduction in prevention of hypoglycemia during moderate-intensity exercise in those with type 1 diabetes. METHODS: This investigation was a retrospective, controlled analysis of 2 independent clinical trials. All participants performed continuous, moderate-intensity cycle ergometer exercise for ∼45 minutes. Two therapy management groups and a control group were compared. Group A was supplemented with 15 to 30 g carbohydrates at a glycemic threshold of 7.0 mmol/L during exercise, group B reduced their individual bolus insulin dose by 50% with their last meal before exercise and group C served as a control. RESULTS: No hypoglycemic events occurred in group A, whereas 4 events were recorded in groups B (p=0.02) and C (p=0.02). CONCLUSIONS: Carbohydrate supplementation was superior to bolus insulin reduction for prevention of hypoglycemia during exercise in people with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Carboidratos da Dieta/administração & dosagem , Exercício Físico , Promoção da Saúde/métodos , Hipoglicemia/prevenção & controle , Insulina/administração & dosagem , Adulto , Biomarcadores/análise , Glicemia/análise , Terapia Combinada , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Suplementos Nutricionais , Gerenciamento Clínico , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Prognóstico , Estudos Retrospectivos
5.
Artigo em Inglês | MEDLINE | ID: mdl-31428047

RESUMO

The importance of regular exercise for glucose management in individuals with type 1 diabetes is magnified by its acknowledgment as a key adjunct to insulin therapy by several governmental, charitable, and healthcare organisations. However, although actively encouraged, exercise participation rates remain low, with glycaemic disturbances and poor cardiorespiratory fitness cited as barriers to long-term involvement. These fears are perhaps exacerbated by uncertainty in how different forms of exercise can considerably alter several acute and chronic physiological outcomes in those with type 1 diabetes. Thus, understanding the bodily responses to specific forms of exercise is important for the provision of practical guidelines that aim to overcome these exercise barriers. Currently, the majority of existing exercise research in type 1 diabetes has focused on moderate intensity continuous protocols with less work exploring predominately non-oxidative exercise modalities like resistance exercise. This is surprising, considering the known neuro-muscular, osteopathic, metabolic, and vascular benefits associated with resistance exercise in the wider population. Considering that individuals with type 1 diabetes have an elevated susceptibility for complications within these physiological systems, the wider health benefits associated with resistance exercise may help alleviate the prevalence and/or magnitude of pathological manifestation in this population group. This review outlines the health benefits of resistance exercise with reference to evidence in aiding some of the common complications associated with individuals with type 1 diabetes.

6.
Nutrients ; 11(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336832

RESUMO

Type 1 diabetes (T1D) is associated with a greater occurrence of cardiovascular pathologies. Vascular dysfunction has been shown at the level of the endothelial layers and failure to maintain a continuous pool of circulating nitric oxide (NO) has been implicated in the progression of poor vascular health. Biochemically, NO can be produced via two distinct yet inter-related pathways that involve an upregulation in the enzymatic activity of nitric oxide synthase (NOS). These pathways can be split into an endogenous oxygen-dependent pathway i.e., the catabolism of the amino acid L-arginine to L-citrulline concurrently yielding NO in the process, and an exogenous oxygen-independent one i.e., the conversion of exogenous inorganic nitrate to nitrite and subsequently NO in a stepwise fashion. Although a body of research has explored the vascular responses to exercise and/or compounds known to stimulate NOS and subsequently NO production, there is little research applying these findings to individuals with T1D, for whom preventative strategies that alleviate or at least temper vascular pathologies are critical foci for long-term risk mitigation. This review addresses the proposed mechanisms responsible for vascular dysfunction, before exploring the potential mechanisms by which exercise, and two supplementary NO donors may provide vascular benefits in T1D.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/terapia , Diabetes Mellitus Tipo 1/terapia , Exercício Físico , Doadores de Óxido Nítrico/administração & dosagem , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia
7.
BMC Public Health ; 19(1): 393, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971234

RESUMO

BACKGROUND: Physical literacy (PL), given as a multidimensional construct, is considered a person's capacity and commitment to a physically active lifestyle. We investigated the effect of a holistic physical exercise training on PL among physically inactive adults. METHODS: A non-randomised controlled study was conducted. Thirty-one physically inactive adults in the intervention group (IG; 81% females, 44 ± 16 years) participated in a holistic physical exercise training intervention once weekly for 15 weeks. A matched, non-exercising control group (CG) consisted of 30 physically inactive adults (80% female, 45 ± 11 years). PL, compliance and sociodemographic parameters were measured. PL was evaluated by a questionnaire, covering five domains: physical activity behaviour, attitude towards a physically active lifestyle, exercise motivation, knowledge and self-confidence/self-efficacy. Data were analysed using ANCOVA models, adjusted for age, gender and BMI at baseline. RESULTS: At post-training intervention, the IG showed significant improvements in PL (p = 0.001) and in the domains physical activity behaviour (p = 0.02) and exercise self-confidence/self-efficacy (p = 0.001), with no changes overserved for the CG regarding PL and those domains. No intervention effect were found for the other three domains, i.e. attitude, knowledge and motivation. Additionally, for the IG baseline BMI was identified to be positively correlated with physical exercise-induced improvements in PL (ß = 0.51, p = 0.01). CONCLUSIONS: The results from this study are very useful for further public health activities, which aim at helping physically inactive adults to adopt a physically active lifestyle as well as for the development of further PL intervention strategies. This pilot-study was a first attempt to measure PL in inactive adults. Yet, a validated measurement tool is still not available. Further research is necessary to determine the psychometric properties for this PL questionnaire. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00013991 , date of registration: 09.02.2018, retrospectively registered.


Assuntos
Terapia por Exercício/métodos , Exercício Físico/psicologia , Letramento em Saúde , Saúde Holística , Comportamento Sedentário , Adulto , Terapia por Exercício/psicologia , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Motivação , Projetos Piloto , Autoeficácia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA