Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 195: 113667, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598107

RESUMO

Measurement of signal molecule is critically important for understanding living systems. Nitric oxide (NO) is a key redox signal molecule that shows diverse roles in virtually all life forms. However, probing into NO's activities is challenging as NO has restricted lifetime (<10 s) and limited diffusion distance (usually <200 µm). So, for the direct acupuncture of NO within the time-space resolution, an electrochemical microsensor has been designed and fabricated in this work. Fabrication of the microsensor is achieved by (1) selective assembly of an electrocatalytic transducer, (2) attaching the transducer on carbon fiber electrode, and (3) covered it with a screen layer to reduce signal interference. The fabricated microsensor exhibits high sensitivity (LOD, 13.5 pM), wide detection range (100 pM-5 µM), and good selectivity. Moreover, studies have revealed that the availability of the sensor for efficient detection of NO is due to the formation of a specific DNA/porphyrin hybrid structure that has synergetic effects on NO electrocatalysis. Therefore, NO release by cells and tissues can be directly and precisely traced, in which we have obtained the release pattern of NO by different cancer cell lines, and have known its dynamics in tumor microenvironment. The fabricated electrocatalytic microsensor may provide a unique and useful tool for the direct assay of NO with high time-space resolution, which promisingly gives a technical solution for the bioassay of NO in living systems.


Assuntos
Terapia por Acupuntura , Técnicas Biossensoriais , Fibra de Carbono , Eletrodos , Óxido Nítrico
2.
Front Psychiatry ; 11: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153441

RESUMO

OBJECTIVE: Using a rat model of chronic unpredictable mild stress (CUMS), to investigate the effects of electroacupuncture (EA) on the tissue plasminogen activator (tPA)/brain-derived neurotrophic factor (BDNF) pathway. METHODS: Sixty male Sprague-Dawley rats were randomly divided into four groups: normal, model, fluoxetine (fluox), or EA. Experimental groups were subjected to 28 d of CUMS modeling. One hour after CUMS, the fluox and EA groups were treated with fluox and a 20 min EA intervention, respectively. Depressive-like behaviors were assessed by open field and sucrose preference tests. After the rats were sacrificed, brains were dissected and processed using hematoxylin and eosin (HE) staining to observe changes in the morphology and quantity of neurons in the hippocampal cornu ammonis 3 area. Western blot and real-time polymerase chain reaction (PCR) demonstrated the effects of EA on the tPA/BDNF pathway-related molecules in the hippocampi and raphe nuclei. RESULTS: Compared to the model group, the number of horizontal and vertical movements and the percentage of sucrose consumption in the EA groups were significantly increased (P < 0.01). Compared to the model group, HE staining showed that the hippocampal neurons in the EA and fluox groups were arranged neatly, with rich layers and complete cell structures. The Western blot and real-time PCR showed that the levels of tPA, BDNF, tropomyosin receptor kinase B, and BDNF micro RNA (mRNA) in the hippocampi of the EA group were higher than in the model group (P < 0.01, P < 0.01, P < 0.05, P < 0.01, respectively). The content of p75NTR, proBDNF, and tPA mRNA in the hippocampi of the EA group displayed no significant differences compared to the model group. The tPA mRNA content in the raphe nuclei of the EA group was higher than in the model group (P < 0.01), and the BDNF content in the raphe nuclei was lower than in the model group (P < 0.05). There were no significant differences in tPA and BDNF mRNA between the EA and model groups. CONCLUSION: EA may reverse depressive-like behaviors in CUMS, which may be related to the tPA/BDNF pathway in the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA