Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochimie ; 204: 33-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36067903

RESUMO

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácido Mevalônico , Colesterol , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Dislipidemias/complicações , Dislipidemias/tratamento farmacológico
2.
Pharmacol Res ; 178: 106163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257898

RESUMO

Chronic inflammation remains an essential complication in the pathogenesis and aggravation of metabolic diseases. There is a growing interest in the use of medicinal plants or food-derived bioactive compounds for their antioxidant and anti-inflammatory properties to improve metabolic function. For example, rutin, a flavonol derivative of quercetin that is found in several medicinal plants and food sources has displayed therapeutic benefits against diverse metabolic diseases. Here, we searched the major electronic databases and search engines such as PubMed/MEDLINE, Scopus and Google Scholar to systematically extract and critically discuss evidence reporting on the impact of rutin against metabolic diseases by affecting inflammation. In fact, available preclinical evidence suggests that rutin, through its strong antioxidant properties, can effectively ameliorate inflammation by reducing the levels of pro-inflammatory markers such as tumor necrosis factor-α, interleukin (IL)-6, cyclooxygenase-2, IL-1ß, as well as blocking nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) activation to improve metabolic function. Notably, although clinical data on the impact of rutin on inflammation is limited, food-derived sources rich in this flavonol such as Fagopyrum tataricum, Coffea arabica and Aspalathus linearis (rooibos) have shown promise in improving metabolic function, in part by reducing markers of oxidative stress and inflammation. However, additional studies are still required to confirm the therapeutic properties of rutin in a clinical setting, including the enhancement of it low bioavailability profile.


Assuntos
Antioxidantes , Rutina , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Rutina/farmacologia , Rutina/uso terapêutico
3.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684871

RESUMO

The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel blocker, antimycin A (6.25 µM), for 12 h to induce mitochondrial dysfunction. Thereafter, cells were treated with aspalathin, isoorientin, and orientin (10 µM) for 4 h, while metformin (1 µM) and insulin (1 µM) were used as comparators. Relevant bioassays and real-time PCR were conducted to assess the impact of treatment compounds on some markers of mitochondrial function. Our results showed that antimycin A induced alterations in the mitochondrial respiration process and mRNA levels of genes involved in energy production. In fact, aspalathin, isoorientin, and orientin reversed such effects leading to the reduced production of intracellular reactive oxygen species. These flavonoids further enhanced the expression of genes involved in mitochondrial function, such as Ucp 2, Complex 1/3, Sirt 1, Nrf 1, and Tfam. Overall, the current study showed that dietary flavonoids, aspalathin, isoorientin, and orientin, have the potential to be as effective as established pharmacological drugs such as metformin and insulin in protecting against mitochondrial dysfunction in a preclinical setting; however, such information should be confirmed in well-established in vivo disease models.


Assuntos
Antimicina A/toxicidade , Aspalathus/química , Chalconas/farmacologia , Flavonoides/farmacologia , Glucosídeos/farmacologia , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Linhagem Celular , Células Cultivadas , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Chá/química
4.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684734

RESUMO

Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic activity, mainly by maintaining substrate utilization which was marked by enhanced glucose and palmitate uptake by liver cells subjected to insulin resistance. Interestingly, these effects can be explained by the improvement in the expression of genes involved in glucose transport (Glut2), insulin signaling (Irs1 and Pi3k), and energy regulation (Ampk and Cpt1). These preliminary findings lay an important foundation for future research to determine the bioactive properties of orientin against dyslipidemia or insulin resistance in reliable and well-established models of type 2 diabetes.


Assuntos
Flavonoides/farmacologia , Glucosídeos/farmacologia , Insulina/genética , Aspalathus/química , Linhagem Celular , Chalconas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucosídeos/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
5.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068459

RESUMO

Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.


Assuntos
Músculo Esquelético/metabolismo , Polifenóis/farmacologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Músculo Esquelético/efeitos dos fármacos , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA