Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(28): 72563-72574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37171730

RESUMO

Salinity has a significant impact on the water quality and crop yield. Physical desalination techniques were once thought to be expensive and time-consuming. Among biological techniques, halotolerant bacteria were thought to be the fastest and most effective way to reduce the salt content in brackish saltwater water. In the current study, halotolerant bacterial biofilms were used to desalinate saline water on abiotic substrates (such as sand, pebbles, glass beads, and plastic beads), and studied subsequently for the effects on Zea mays germination. Briefly, salt samples (SLT7 and SLT8) from the Khewra site in Punjab, Pakistan, as well as seawater and sea sand samples (USW1, USW3, USW6, DSW1, DSW4, SS1, and SS3) from Karachi, Sindh, Pakistan's Arabian Sea, were collected. Halotolerant bacteria were isolated and characterized. Crystal violet ring assays and capsule staining were used to estimate extracellular polymeric substance (EPS) and biofilm development, respectively. All halotolerant bacterial strains were spore formers and produced EPS and formed biofilms well. 16S rRNA gene sequencing of the best halotolerant bacteria, USW6, showed the closest (100%) similarity to Bacillus aerius strain G-07 (a novel species) (accession number ON202984). A pilot-scale experiment for desalinating the artificial water (supplemented with 1 M NaCl) using biofilm adhered abiotic beads showed declined level of NaCl from 1 M to 0.00003 M after 15 days in treated water. Also, Zea mays germination was observed in the plants using treated water compared to no growth in the non-treated saline water. Estimations of chlorophyll, total soluble sugar, and protein revealed that plants cultivated using elute collected from a desalinated pilot scale setup contained less chlorophyll (i.e., 5.994 and 116.76). Likewise, plants grown with elute had a total soluble protein and sugar content of 1.45 mg/ml and 1.3 mg/ml, respectively. Overall, in treated water plants, a minor drop in chlorophyll content, a slight increase in total soluble sugar content, and a slight increase in protein content were noted. The study concluded that biofilm-treated desalt water has the potential to significantly reduce the effects of droughts, soil salinization, and economic and environmental issues associated with agricultural drainage. The results specified the application of halotolerant bacteria biofilms (Bacillus aerius, a novel species, USW6) for water desalination to overcome the problem of water scarcity caused by global warming and the increased salinity.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Sódio , Projetos Piloto , Cloreto de Sódio/farmacologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Areia , RNA Ribossômico 16S , Bactérias/metabolismo , Biofilmes , Clorofila/metabolismo
2.
BMC Struct Biol ; 18(1): 6, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673347

RESUMO

BACKGROUND: Due to dengue virus disease, half of the world population is at severe health risk. Viral encoded NS2B-NS3 protease complex causes cleavage in the nonstructural region of the viral polyprotein. The cleavage is essentially required for fully functional viral protein. It has already been reported that if function of NS2B-NS3 complex is disrupted, viral replication is inhibited. Therefore, the NS2B-NS3 is a well-characterized target for designing antiviral drug. RESULTS: In this study docking analysis was performed with active site of dengue NS2B-NS3 protein with selected plant flavonoids. More than 100 flavonoids were used for docking analysis. On the basis of docking results 10 flavonoids might be considered as the best inhibitors of NS2B-NS3 protein. The interaction studies showed resilient interactions between ligand and receptor atoms. Furthermore, QSAR and SAR studies were conducted on the basis of NS2B-NS3 protease complex docking results. The value of correlation coefficient (r) 0.95 shows that there was a good correlation between flavonoid structures and selected properties. CONCLUSION: We hereby suggest that plant flavonoids could be used as potent inhibitors of dengue NS2B-NS3 protein and can be used as antiviral agents against dengue virus. Out of more than hundred plant flavonoids, ten flavonoid structures are presented in this study. On the basis of best docking results, QSAR and SAR studies were performed. These flavonoids can directly work as anti-dengue drug or with little modifications in their structures.


Assuntos
Vírus da Dengue/enzimologia , Flavonoides/farmacologia , Peptídeo Hidrolases/química , Plantas/química , Inibidores de Proteases/farmacologia , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Flavonoides/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteases/química , Serina Endopeptidases/química , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA