Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803601

RESUMO

Hypogonadism, associated with low levels of testosterone synthesis, has been implicated in several diseases. Recently, the quest for natural alternatives to prevent and treat hypogonadism has gained increasing research interest. To this end, the present study explored the effect of S-allyl cysteine (SAC), a characteristic organosulfur compound in aged-garlic extract, on testosterone production. SAC was administered at 50 mg/kg body weight intraperitoneally into 7-week-old BALB/c male mice in a single-dose experiment. Plasma levels of testosterone and luteinizing hormone (LH) and testis levels of proteins involved in steroidogenesis were measured by enzymatic immunoassay and Western blot, respectively. In addition, mouse testis-derived I-10 cells were also used to investigate the effect of SAC on steroidogenesis. In the animal experiment, SAC significantly elevated testosterone levels in both the plasma and the testis without changing the LH level in plasma and increased phosphorylated protein kinase A (p-PKA) levels. Similar results were also observed in I-10 cells. The findings demonstrating the increasing effect of SAC on p-PKA and mRNA levels of Cyp11a suggest that SAC increases the testosterone level by activating the PKA pathway and could be a potential target for hypogonadism therapeutics.


Assuntos
Cisteína/análogos & derivados , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/biossíntese , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cisteína/farmacologia , Ativação Enzimática/efeitos dos fármacos , Alho/química , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Testículo/citologia , Testosterona/sangue
2.
Lipids Health Dis ; 20(1): 24, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648494

RESUMO

BACKGROUND: Dietary sphingolipids have various biofunctions, including skin barrier improvement and anti-inflammatory and anti-carcinoma properties. Long-chain bases (LCBs), the essential backbones of sphingolipids, are expected to be important for these bioactivities, and they vary structurally between species. Given these findings, however, the absorption dynamics of each LCB remain unclear. METHODS: In this study, five structurally different LCBs were prepared from glucosylceramides (GlcCers) with LCB 18:2(4E,8Z);2OH and LCB 18:2(4E,8E);2OH moieties derived from konjac tuber (Amorphophallus konjac), from GlcCers with an LCB 18(9Me):2(4E,8E);2OH moiety derived from Tamogi mushroom (Pleurotus cornucopiae var. citrinopileatus), and from ceramide 2-aminoethyphosphonate with LCB 18:3(4E,8E,10E);2OH moiety and LCB 18(9Me):3(4E,8E,10E);2OH moiety derived from giant scallop (Mizuhopecten yessoensis), and their absorption percentages and metabolite levels were analyzed using a lymph-duct-cannulated rat model via liquid chromatography tandem mass spectrometry (LC/MS/MS) with a multistage fragmentation method. RESULTS: The five orally administered LCBs were absorbed and detected in chyle (lipid-containing lymph) as LCBs and several metabolites including ceramides, hexosylceramides, and sphingomyelins. The absorption percentages of LCBs were 0.10-1.17%, depending on their structure. The absorption percentage of LCB 18:2(4E,8Z);2OH was the highest (1.17%), whereas that of LCB 18:3(4E,8E,10E);2OH was the lowest (0.10%). The amount of sphingomyelin with an LCB 18:2(4E,8Z);2OH moiety in chyle was particularly higher than sphingomyelins with other LCB moieties. CONCLUSIONS: Structural differences among LCBs, particularly geometric isomerism at the C8-C9 position, significantly affected the absorption percentages and ratio of metabolites. This is the first report to elucidate that the absorption and metabolism of sphingolipids are dependent on their LCB structure. These results could be used to develop functional foods that are more readily absorbed.


Assuntos
Trato Gastrointestinal/metabolismo , Linfa/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo , Animais , Ceramidas/química , Ceramidas/metabolismo , Cromatografia Líquida , Suplementos Nutricionais , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Linfa/efeitos dos fármacos , Pleurotus/genética , Ratos , Esfingolipídeos/química , Esfingolipídeos/genética , Esfingomielinas/química , Espectrometria de Massas em Tandem
3.
Sci Rep ; 9(1): 16827, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727994

RESUMO

The accumulation of amyloid-ß protein (Aß) in brain is linked to the early pathogenesis of Alzheimer's disease (AD). We previously reported that neuron-derived exosomes promote Aß clearance in the brains of amyloid precursor protein transgenic mice and that exosome production is modulated by ceramide metabolism. Here, we demonstrate that plant ceramides derived from Amorphophallus konjac, as well as animal-derived ceramides, enhanced production of extracellular vesicles (EVs) in neuronal cultures. Oral administration of plant glucosylceramide (GlcCer) to APP overexpressing mice markedly reduced Aß levels and plaque burdens and improved cognition in a Y-maze learning task. Moreover, there were substantial increases in the neuronal marker NCAM-1, L1CAM, and Aß in EVs isolated from serum and brain tissues of the GlcCer-treated AD model mice. Our data showing that plant ceramides prevent Aß accumulation by promoting EVs-dependent Aß clearance in vitro and in vivo provide evidence for a protective role of plant ceramides in AD. Plant ceramides might thus be used as functional food materials to ameliorate AD pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amorphophallus/química , Peptídeos beta-Amiloides/genética , Vesículas Extracelulares/metabolismo , Glucosilceramidas/efeitos adversos , Administração Oral , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/citologia , Antígeno CD56/metabolismo , Modelos Animais de Doenças , Glucosilceramidas/química , Glucosilceramidas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA