Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447330

RESUMO

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Assuntos
Doença de Alzheimer , Alga Marinha , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Doença de Alzheimer/tratamento farmacológico , PPAR alfa/genética , Espectrometria de Massas em Tandem , Receptores Citoplasmáticos e Nucleares/genética , Colesterol/metabolismo , Ácidos Graxos/metabolismo
2.
Clin Nutr ; 40(11): 5587-5594, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656955

RESUMO

BACKGROUND & AIMS: Microalbuminuria is an early sign of vascular complications of type 2 diabetes and predicts cardiovascular disease and mortality. Monomeric and oligomeric flavanols (MOFs) are linked to improved vascular health. The aim of this study was to assess the effect of 3 months MOFs on albuminuria and endothelial function markers in patients with type 2 diabetes and microalbuminuria. METHODS: We conducted a double-blind, placebo-controlled trial among patients with type 2 diabetes and microalbuminuria. Patients with type 2 diabetes received either 200 mg MOFs or placebo daily on top of their habitual diet and medication. The primary endpoint was the between-group difference of the change in 24-h Albumin Excretion Rate (AER) over three months. Secondary endpoints were the between-group differences of the change in plasma levels of different markers of endothelial dysfunction. Mixed-modelling was applied for the longitudinal analyses. RESULTS: Participants (n = 97) were 63.0 ± 9.5 years old; diabetes-duration was 15.7 ± 8.5 years. Median baseline AER was 60 (IQR 20-120) mg/24 h. There was no within-group difference in median change of AER from baseline to 3 months in the intervention (0 (-35-21) mg/24 h, p = 0.41) or the control group (0 (-20-10) mg/24 h, p = 0.91). There was no between-group difference in the course of AER over three months (log-transformed data: ß = -0.02 (95%CI -0.23-0.20), p = 0.88), nor in the plasma levels of the endothelial dysfunction markers. CONCLUSION: Daily 200 mg MOFs for three months on top of habitual diet and usual care did not reduce AER and plasma markers of endothelial dysfunction compared to placebo, in patients with long-term type 2 diabetes and microalbuminuria. CLINICAL TRIALS REGISTRATION: NTR4669, www.trialregister.nl.


Assuntos
Albuminúria/terapia , Diabetes Mellitus Tipo 2/terapia , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Flavonóis/administração & dosagem , Idoso , Albuminúria/complicações , Albuminúria/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Método Duplo-Cego , Feminino , Flavonóis/química , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479994

RESUMO

Patterned degeneration of Purkinje cells (PCs) can be observed in a wide range of neuropathologies, but mechanisms behind nonrandom cerebellar neurodegeneration remain unclear. Sphingolipid metabolism dyshomeostasis typically leads to PC neurodegeneration; hence, we questioned whether local sphingolipid balance underlies regional sensitivity to pathological insults. Here, we investigated the regional compartmentalization of sphingolipids and their related enzymes in the cerebellar cortex in healthy and pathological conditions. Analysis in wild-type animals revealed higher sphingosine kinase 1 (Sphk1) levels in the flocculonodular cerebellum, while sphingosine-1-phosphate (S1P) levels were higher in the anterior cerebellum. Next, we investigated a model for spinocerebellar ataxia type 1 (SCA1) driven by the transgenic expression of the expanded Ataxin 1 protein with 82 glutamine (82Q), exhibiting severe PC degeneration in the anterior cerebellum while the flocculonodular region is preserved. In Atxn1[82Q]/+ mice, we found that levels of Sphk1 and Sphk2 were region-specific decreased and S1P levels increased, particularly in the anterior cerebellum. To determine if there is a causal link between sphingolipid levels and neurodegeneration, we deleted the Sphk1 gene in Atxn1[82Q]/+ mice. Analysis of Atxn1[82Q]/+; Sphk1-/- mice confirmed a neuroprotective effect, rescuing a subset of PCs in the anterior cerebellum, in domains reminiscent of the modules defined by AldolaseC expression. Finally, we showed that Sphk1 deletion acts on the ATXN1[82Q] protein expression and prevents PC degeneration. Taken together, our results demonstrate that there are regional differences in sphingolipid metabolism and that this metabolism is directly involved in PC degeneration in Atxn1[82Q]/+ mice.


Assuntos
Ataxina-1/metabolismo , Células de Purkinje/metabolismo , Esfingolipídeos/metabolismo , Animais , Ataxina-1/genética , Encéfalo/metabolismo , Doenças Cerebelares/fisiopatologia , Cerebelo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Proteínas Nucleares/metabolismo , Ataxias Espinocerebelares/genética
4.
Nutrients ; 13(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34444774

RESUMO

Multiple health benefits have been ascribed to brown seaweeds that are used traditionally as dietary component mostly in Asia. This systematic review summarizes information on the impact of brown seaweeds or components on inflammation, and inflammation-related pathologies, such as allergies, diabetes mellitus and obesity. We focus on oral supplementation thus intending the use of brown seaweeds as food additives. Despite the great diversity of experimental systems in which distinct species and compounds were tested for their effects on inflammation and immunity, a remarkably homogeneous picture arises. The predominant effects of consumption of brown seaweeds or compounds can be classified into three categories: (1) inhibition of reactive oxygen species, known to be important drivers of inflammation; (2) regulation, i.e., in most cases inhibition of proinflammatory NF-κB signaling; (3) modulation of adaptive immune responses, in particular by interfering with T-helper cell polarization. Over the last decades, several inflammation-related diseases have increased substantially. These include allergies and autoimmune diseases as well as morbidities associated with lifestyle and aging. In this light, further development of brown seaweeds and seaweed compounds as functional foods and nutriceuticals might contribute to combat these challenges.


Assuntos
Suplementos Nutricionais , Hipersensibilidade/dietoterapia , Inflamação/dietoterapia , Alga Marinha , Verduras , Imunidade Adaptativa , Ásia , Bases de Dados Factuais , Dieta , Alimento Funcional , Humanos , Hipersensibilidade/imunologia , Inflamação/imunologia , Obesidade , Espécies Reativas de Oxigênio
5.
Mar Drugs ; 19(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801706

RESUMO

We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRß-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-ß (Aß) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aß and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aß plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aß load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Nootrópicos/farmacologia , Estigmasterol/análogos & derivados , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Estigmasterol/farmacologia
6.
J Alzheimers Dis ; 60(3): 783-794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922150

RESUMO

Ceramide levels are increased in blood and brain tissue of Alzheimer's disease (AD) patients. Since the ceramide transporter protein (CERT) is the only known protein able to mediate non-vesicular transfer of ceramide between organelle membranes, the modulation of CERT function may impact on ceramide accumulation. The competitive CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide (HPA-12) interferes with ceramide trafficking. To understand the role of ceramide/CERT in AD, HPA-12 can be a useful tool to modulate ceramide trafficking. Here we first report the synthesis and in vitro properties of HPA-12 radiolabeled with fluorine-18 and present preliminary in vitro and in vivo positron emission tomography (PET) imaging and biodistribution data. In vitro results demonstrated that the fluorination did not alter the biological properties of HPA-12 since the [fluorine-19]HPA-12, interferes with 5-DMB-ceramide trafficking in HeLa cells. Radiolabeled HPA-12, [fluorine-18]HPA-12, was obtained with a radiochemical yield of 90% and a specific activity of 73 MBq/µmol. PET imaging on wild-type mice showed hepatobiliary clearance and a brain uptake on the order of 0.3 standard uptake value (SUV) one hour post injection. Furthermore, the biodistribution data showed that after removal of the blood by intracardial perfusion, radioactivity was still measurable in the brain demonstrating that the [fluorine-18]HPA-12 crosses the blood brain barrier and is retained in the brain.


Assuntos
Amidas , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Amidas/síntese química , Amidas/química , Amidas/farmacocinética , Animais , Encéfalo/metabolismo , Ceramidas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Halogenação , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA