Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770968

RESUMO

The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons.


Assuntos
Hormônio Liberador da Corticotropina , Núcleo Hipotalâmico Paraventricular , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo
2.
PLoS Comput Biol ; 14(6): e1006171, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29949575

RESUMO

Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.


Assuntos
Córtex Cerebral/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Adulto , Simulação por Computador , Conectoma , Eletroencefalografia/métodos , Feminino , Voluntários Saudáveis , Humanos , Magnetoencefalografia/métodos , Masculino , Consolidação da Memória/fisiologia , Neurônios/fisiologia , Fases do Sono/fisiologia
3.
Elife ; 52016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27855061

RESUMO

During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Memória , Sono , Tálamo/fisiologia , Eletrocorticografia , Humanos , Análise Espaço-Temporal
4.
J Physiol Paris ; 106(5-6): 222-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22863604

RESUMO

Propagating waves of activity have been recorded in many species, in various brain states, brain areas, and under various stimulation conditions. Here, we review the experimental literature on propagating activity in thalamus and neocortex across various levels of anesthesia and stimulation conditions. We also review computational models of propagating waves in networks of thalamic cells, cortical cells and of the thalamocortical system. Some discrepancies between experiments can be explained by the "network state", which differs vastly between anesthetized and awake conditions. We introduce a network model displaying different states and investigate their effect on the spatial structure of self-sustained and externally driven activity. This approach is a step towards understanding how the intrinsically-generated ongoing activity of the network affects its ability to process and propagate extrinsic input.


Assuntos
Conectoma , Neocórtex/fisiologia , Redes Neurais de Computação , Tálamo/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Animais , Inconsciente Psicológico , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA