Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 454: 131468, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146338

RESUMO

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Assuntos
Melatonina , Metais Pesados , Melatonina/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Superóxido Dismutase/metabolismo , Cromo/metabolismo , Glutationa Redutase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Plântula/metabolismo
2.
Environ Pollut ; 306: 119375, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500717

RESUMO

The ever-increasing industrial activities over the decades have generated high toxic metals such as chromium (Cr) that hampers plant growth and development. To counter Cr-toxicity, plants have evolved complex defensive systems including hormonal crosstalk with various signaling pathways. 24-epibrassinolide (24-EBR) lowers oxidative stress and alleviates Cr(VI)-toxicity in plants. In this study, the concealed BR-mediated influences on Cr(VI)-stress tolerance were explored by transcriptome analysis in the Capsicum annuum. Results revealed a linkage between plant development under Cr(VI)-stress and the mitigating effect of 24-epibrassinolide and brassinazole. Growth inhibition, chlorophyll degradation, and a significant rise of malondialdehyde (MDA) were observed after 40 mg/L Cr(VI) treatment in Brz supplemented seedlings, whereas 24-EBR supplemented seedlings exhibited commendatory effect. Comparative transcriptome analysis showed that the expression levels of 6687 genes changed (3846 up-regulated and 2841 downregulated) under Cr(VI)-stress with Brz supplementation. Whereas the expression levels of only 1872 genes changed under Cr(VI)-stress with 24-EBR supplementation (1223 up-regulated and 649 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that drug transport, defense responses, and drug catabolic process were the considerable enrichments between 24-EBR and Brz supplemented seedlings under Cr(VI)-stress. Furthermore, auxin signaling, glutathione metabolism, ABC transporters, MAPK pathway, and 36 heavy metal-related genes were significantly differentially expressed components between Cr(VI)-stress, 24-EBR, and Brz supplemented seedlings. Overall, our data demonstrate that employing 24-EBR can commendably act as a growth stimulant in plants subjected to Cr(VI)-stress by modulating the physiological and defense regulatory system.


Assuntos
Cromo , Transcriptoma , Brassinosteroides , Cromo/metabolismo , Cromo/toxicidade , Perfilação da Expressão Gênica , Plântula/metabolismo , Esteroides Heterocíclicos
3.
Plant Physiol Biochem ; 132: 345-355, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257236

RESUMO

Soil co-contamination with lead (Pb) and cadmium (Cd) is a tenacious risk to crop production globally. The current experiment observed the roles of amendments [biochar (BC), slag (SL), and ferrous manganese ore (FMO)] for enhancing Pb and Cd tolerance in sesame (Sesamum indicum L.). Our results revealed that application of amendments significantly enhanced the nutrient level of sesame seedlings developed under extreme Pb and Cd conditions. The higher Pb and Cd-tolerance in sesame encouraged by amendments might be credited to its capability to restrict Pb and Cd uptake and decreased oxidative damage induced by Pb and Cd that is also demonstrated by lesser production of hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced electrolyte leakage (EL) in plant biomass. The added amendments relieved Pb and Cd toxicity and improved photosynthetic pigments, soluble protein, and proline content. Not only this amendments also decreased the antioxidant bulk, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in sesame plants compared to control when exposed to Pb and Cd. Moreover, the added amendments = down-regulated the genes expression which regulate the SOD, POD, and CAT activity in sesame under Pb and Cd-stress. Furthermore, supplementation of amendments to the soil, reduced the bio accessibility (SBET), leachability (TCLP), and mobility (CaCl2) of Pb and Cd. Collectively, our findings conclude that the application of amendments enhanced sesame tolerance to Pb and Cd stress by restricting Pb and Cd accumulation, maintained photosynthetic presentation and dropped oxidative loss through enhanced antioxidant system, thus signifying amendments as an operational stress regulators in modifying Pb and Cd-toxicity that is highly important economically in all crops including sesame.


Assuntos
Cádmio/toxicidade , Carvão Vegetal/farmacologia , Poluição Ambiental , Chumbo/toxicidade , Sesamum/crescimento & desenvolvimento , Sesamum/metabolismo , Solo/química , Antioxidantes/metabolismo , Biomassa , Cloreto de Cálcio/química , Condutividade Elétrica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sesamum/efeitos dos fármacos , Sesamum/genética , Poluentes do Solo/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA