Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Poult Sci ; 103(3): 103467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295502

RESUMO

In this study, a total of 312 Hyline brown laying hen of 1.92 ± 0.12 kg acquired at 24-wk old were employed to evaluate the pharmaceutical effect of Korean wild ginseng residue extract administered via drinking water on the performance, microbiota quality, cytokine expression, and the ginsenoside saponin (GS) content of laying hen for 12 wk. In the experiments, basic feed (CON) was compared with basic feed + 0.05% wild ginseng in drinking water (WGD1), basic feed + 0.1% wild ginseng in drinking water (WGD2), and basic feed + 0.5% wild ginseng in drinking water (WGD3). At the end of study, hen-day egg production (HDEP), average egg weight (AEW), and egg mass (EM) were linearly higher (p < 0.05) in WGD3 at wk 30 to 33, 34 to 37 wk, and the cumulative wk compared with CON. Feed conversion ratio (FCR) was linearly lower in WGD3 at 34 to 37 wk, and the cumulative wk compared with CON. Relative expression of tumor necrosis factor alpha (TNF-α) was linearly lower (p < 0.05) in the WGD3 at wk 30 to 33, and 34 to 37 wk compared with CON. The GS in egg yolk was linearly higher (p < 0.05) in laying hens supplemented the WGD3 treatment at wk 34 to 37, while the fecal microflora quantity of Lactobacillus was linearly higher (p < 0.05) in WGD3 at wk 30 to 33, till 34 to 37 wk, and Escherichia coli (E. coli) was linearly lower (p < 0.05) in the WGD2 and WGD3 from 2637 wk compared with CON. We concluded the result in HDEP, AEW, EM, and FCR were due to the increase in GS content, tentatively leading to an improvement in the TNF-α, and fecal microflora quality such as Lactobacillus and E. coli in the WGD3. We therefore recommend the use of WGD3 at application level 0.5% in drinking water for optimum laying performance from 30 to 37 wk.


Assuntos
Água Potável , Ginsenosídeos , Microbiota , Panax , Saponinas , Animais , Feminino , Citocinas/genética , Saponinas/farmacologia , Fator de Necrose Tumoral alfa , Galinhas , Escherichia coli , Óvulo , Ginsenosídeos/farmacologia , Lactobacillus , Preparações Farmacêuticas , Extratos Vegetais/farmacologia , República da Coreia
2.
Arch Anim Nutr ; 77(5): 342-362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886795

RESUMO

The study was conducted to evaluate the impact of dietary level of crude protein (CP) and protease supplementation on growth performance, digestibility of nutrients, intestinal morphology, and gut microbiota in weaning pigs. Three hundred cross-bred piglets (Duroc × Landrace × Yorkshire) were allotted to five dietary treatments on the basis of initial body weight (BW) and sex. Pigs were group-housed in pens with each treatment with 10 replicate pens with six pigs per pen. The treatments included a standard diet (STD), STD with 0.6% lower protein (STD0.6), STD with 0.6% lower protein and protease supplementation (Pro0.6), STD with 1.0% lower protein (STD1.0), STD with 1.0% lower protein and protease supplementation (Pro1.0). Results indicated a higher BW (p < 0.05) of piglets in the Pro0.6 group at days 0-42 compared to the STD0.6 and STD1.0 groups. The average daily gain was higher (p < 0.05) in the Pro0.6 treatments at days 0-42 compared to the STD0.6 and STD1.0. The gain to feed ratio was higher (p < 0.05) in the STD, and Pro0.6 groups compared to the STD0.6, Pro1.0 and the STD1.0 groups at days 0-42. Dry matter digestibility was lower (p < 0.05) in the STD1.0 group than the Pro0.6 and Pro1.0 groups. The crude protein digestibility was higher (p < 0.05) in the Pro0.6 group compared to the STD, STD0.6 and STD1.0 treatment groups while crude fat digestibility was higher (p < 0.05) in the STD and Pro0.6 compared with the STD0.6 and STD1.0 groups. Digestibility was higher for histidine (p < 0.05), leucine (p < 0.05) in the protease Pro0.6 and Pro1.0 groups than in the STD0.6 and STD1.0 groups. The digestibility of non-essential AA was higher for alanine (p < 0.05) in the Pro0.6 than the STD1.0 group. For faecal microbial population, Faecalibacterium abundance was higher (p < 0.05) in the Pro0.6 compared to all the other groups while the population of Actinobacteria was greater (p < 0.05) in the STD group and lowest in the Pro1.0 treatment. In the ileum, villus height was greater (p < 0.05) in the protease Pro0.6, and Pro1.0 groups compared to the STD0.6, and STD1.0 groups while the villus height to crypts depth ratio was lower (p < 0.05) in the STD 1.0 group compared to the STD, Pro0.6, and Pro1.0 groups. Based on these results, dietary protease supplementation improved nutrient digestibility and gut histo-morphology translating to improved utilisation of nutrients thus positively impacting growth performance in weaned pigs. Further, reducing the CP content in the diets increased the abundance of Muribaculaceae while protease supplementation increased the population of Faecalibacterium in the gut of the weanling piglets on the STD0.6 diet.


Assuntos
Dieta , Microbioma Gastrointestinal , Animais , Suínos , Dieta/veterinária , Peptídeo Hidrolases , Digestão , Ração Animal/análise , Suplementos Nutricionais/análise
3.
J Anim Sci Technol ; 64(5): 871-884, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36287786

RESUMO

Two experiments were conducted to evaluate the effects of calcium (Ca) levels in weanling pigs (Landrace × Yorkshire × Duroc). In experiment 1, one hundred and eighty weanling pigs were randomly allotted to one of the three treatments. The treatments were low (Ca 0.60% in phase 1 and 0.50% in phase 2), standard (Ca 0.72% in phase 1 and 0.66% in phase 2), and high (Ca 0.84% in phase 1 and 0.72% in phase 2). In experiment 2, hundred and forty weanling pigs were randomly assigned to one of four treatments differing in Ca levels (high and low) and sources (CaCl2 and CaCO3) in a 2 × 2 factorial arrangement. There were 10 pigs per replicate in both experiments, with 6 replicates in each treatment, and they were conducted in two phases (phase 1, days 0-14; phase 2, days 15-28). In experiment 1, body weight (BW), average daily gain (ADG), and growth to feed ratio (G/F) increased as the Ca level decreased (p < 0.05). P digestibility was higher in the low-Ca diet group than in the high-Ca diet group (p <0.05). In experiment 2, the final BW, ADG, and G/F increased in the CaCl2 diet group compared with the case in the CaCO3 diet group (p < 0.05). The digestibility of crude protein (CP), Ca, and P was higher in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). Cl- levels were higher in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). The bicarbonate (HCO3 -), base excess (BE), and electrolyte balance (EB) levels were lower in the CaCl2 diet group than in the CaCO3 diet group (p < 0.05). Hematocrit increased as the Ca level decreased (p < 0.05). The HCO3 - interacted with the Ca sources and thus, affected the Ca levels (p < 0.05). Bone ash, Ca, and P were downregulated in the low-Ca diet group compared with the case in the high-Ca diet group. Overall, the low dietary Ca supplementation led to greater growth performance. Furthermore, CaCl2 appeared to be a better Ca source than CaCO3 because of the greater digestibility of CP, Ca, and P, and improved EB.

4.
J Anim Sci Technol ; 64(1): 70-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35174343

RESUMO

A set of studies was performed to determine the influence of dietary ZnO concentration and source during two phases (days 0 to 14 and days 15 to 28). Experiment 1: 168 weaned piglets were allocated to four treatment groups in six replicates. The treatments included a basal diet without ZnO supplementation (control), 2,500 mg ZnO/kg (In2500), 500 mg nano-ZnO/kg (N500), and 150 mg nano-ZnO/kg (N150). Experiment 2: 168 weaned piglets were divided into three treatment groups with eight replicates. The treatments included control, In2500, N300, and 150 mg nano-ZnO/kg (N150). An in vitro trial showed that the growth of Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium was inhibited when exposed to 300 and 500 ppm of ZnO after 24 h of incubation. In experiment 1, the average daily gain (ADG) by the pigs was improved in the N500 and IN2500 treatment groups. Colonization of coliforms and Clostridium spp. significantly decreased in the pigs fed the N500 and IN2500 diets in phase 1. The total plasma antioxidant capacity was greater in the IN2500 and N500 treatment groups than in the control. Superoxide dismutase (SOD) activity was greater in pigs fed the IN2500 (phase 1) or the IN2500 and N500 (phase 2) diets than in the control and N150 treatment group. In experiment 2, pigs in the N300 treatment group showed a higher ADG and lower fecal score colonization of coliforms and Clostridium spp. compared with those in the N150 treatment group. In conclusion, nano-ZnO at a dose of 300 ppm showed the same growth as the pharmacological dose of Zn. This provides an option to the pharmacological dose.

5.
Biol Trace Elem Res ; 200(3): 1321-1330, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33954866

RESUMO

This experiment was conducted to investigate the effect of the supplementation of hot-melt extrusion (HME) processed zinc sulfate (ZnSO4) on the growth performance, antioxidative activity, pancreatic digestive enzyme, small intestinal morphology, nutrient digestibility, and Zn content in broilers. The chicks were allocated to three treatments, each of which had five replicates of 15 chicks per replicate. The broiler chickens were assigned to three dietary treatments: the control (without supplemental Zn), IN-Zn (ZnSO4, 80 mg/kg), and HME-Zn (HME processed ZnSO4 as nano-Zn, 80 mg/kg). The broilers fed diets supplemented with 80 mg/kg of HME-Zn improved the BWG (P < 0.05) and FCR (P < 0.05) compared to the broilers fed the control and IN-Zn diets in phase 2. The Zn supplementation significantly enhanced the superoxide dismutase (SOD) activity in the serum (P < 0.05) and liver (P < 0.05), and HME-Zn supplementation significantly increased the SOD in the liver compared to the IN-Zn supplementation. Reduced malondialdehyde (MDA) concentration was seen with the Zn supplementation compared to the control (P < 0.05). The chickens fed diets supplemented with the HME-Zn had higher activity of amylase (P < 0.05) and trypsin (P < 0.05) than those of the chickens fed the control and IN-Zn diets. The villus height (VH) in the duodenum (P < 0.05) and jejunum (P < 0.05) increased with the ZnSO4 and HME-Zn supplementation compared to the control. The VH and crypt depth rate (VH:CD) in the jejunum improved with the HME-Zn compared to the control (P < 0.05). The HME-Zn significantly increased the apparent ileal digestible crude protein (CP) (P < 0.05) and energy corrected by nitrogen (AIDEn) (P < 0.05) compared to the control or IN-Zn. In phases 1 and 2, the HME-Zn significantly increased Zn concentration in the liver and tibia compared to control and IN-Zn (P < 0.05). The excretion of Zn was significantly decreased in the HME-Zn compared to the IN-Zn (P < 0.05). In conclusion, supplementation of 80 mg/kg of HME-Zn in diets improved the growth performance, antioxidative activity, pancreatic enzyme activity, intestinal villus height, and nutrient digestibility with the improved Zn bioavailability in broilers.


Assuntos
Galinhas , Sulfato de Zinco , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes , Disponibilidade Biológica , Dieta , Suplementos Nutricionais , Nutrientes , Zinco/farmacologia , Sulfato de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA