Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 158(6): 1650-1666.e15, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032583

RESUMO

BACKGROUND & AIMS: Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells. METHODS: We performed transcriptome analysis of Mist1-CreERT-traced cells, with or without chief cell depletion. Gpr30-rtTA mice were generated and crossed to TetO-Cre mice, and lineage tracing was performed after crosses to R26-TdTomato mice. Additional lineage tracing experiments were performed using Mist1-CreERT, Kitl-CreERT, Tff1-Cre, and Tff2-Cre mice crossed to reporter mice. Mice were given high-dose tamoxifen or DMP-777 or were infected with Helicobacter pylori to induce gastric metaplasia. We studied mice that expressed mutant forms of Ras in gastric cells, using TetO-KrasG12D, LSL-KrasG12D, and LSL-HrasG12V mice. We analyzed stomach tissues from GPR30-knockout mice. Mice were given dichloroacetate to inhibit pyruvate dehydrogenase kinase (PDK)-dependent cell competition. RESULTS: We identified GPR30, the G-protein-coupled form of the estrogen receptor, as a cell-specific marker of chief cells in gastric epithelium of mice. Gpr30-rtTA mice crossed to TetO-Cre;R26-TdTomato mice had specific expression of GPR30 in chief cells, with no expression noted in isthmus stem cells or lineage tracing of glands. Expression of mutant Kras in GPR30+ chief cells did not lead to the development of metaplasia or dysplasia but, instead, led to a reduction in labeled numbers of chief cells and a compensatory expansion of neck lineage, which was derived from upper Kitl+ clones. Administration of high-dose tamoxifen, DMP-777, or H pylori decreased the number of labeled chief cells. Chief cells were eliminated from epithelia via GPR30- and PDK-dependent cell competition after metaplastic stimuli, whereas loss of GRP30 or inhibition of PDK activity preserved chief cell numbers and attenuated neck lineage cell expansion. CONCLUSIONS: In tracing studies of mice, we found that most chief cells are lost during metaplasia and therefore are unlikely to contribute to gastric carcinogenesis. Expansion of cells that coexpress neck and chief lineage markers, known as spasmolytic polypeptide-expressing metaplasia, does not occur via dedifferentiation from chief cells but, rather, through a compensatory response from neck progenitors to replace the eliminated chief cells.


Assuntos
Celulas Principais Gástricas/fisiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Azetidinas/toxicidade , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Ácido Dicloroacético/administração & dosagem , Modelos Animais de Doenças , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaplasia/induzido quimicamente , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Knockout , Piperazinas/toxicidade , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/fisiologia , Tamoxifeno/toxicidade
2.
Nat Biotechnol ; 34(7): 746-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272383

RESUMO

Widespread application of gene therapy will depend on the development of simple methods to regulate the expression of therapeutic genes. Here we harness an endogenous signaling pathway to regulate therapeutic gene expression through diet. The GCN2-eIF2α signaling pathway is specifically activated by deficiencies in any essential amino acid (EAA); EAA deficiency leads to rapid expression of genes regulated by ATF4-binding cis elements. We found that therapeutic genes under the control of optimized amino acid response elements (AAREs) had low basal expression and high induced expression. We applied our system to regulate the expression of TNFSF10 (TRAIL) in the context of glioma therapy and found that intermittent activation of this gene by EEA-deficient meals retained its therapeutic efficacy while abrogating its toxic effects on normal tissue. The GCN2-eIF2α pathway is expressed in many tissues, including the brain, and is highly specific to EAA deficiency. Our system may be particularly well suited for intermittent regulation of therapeutic transgenes over short or long time periods.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Administração Oral , Aminoácidos Essenciais/farmacocinética , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Ingestão de Alimentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Transgenes/genética , Resultado do Tratamento
3.
Cell Rep ; 6(3): 438-44, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24485657

RESUMO

The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.


Assuntos
Ingestão de Alimentos/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Hipotálamo/metabolismo , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Técnicas de Silenciamento de Genes , Leucina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA