Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9215, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654807

RESUMO

The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Animais , Ciclotídeos/química , Células HEK293 , Humanos , Ligantes , Camundongos , Extratos Vegetais , Receptor de Colecistocinina B , Sincalida
2.
Biomed Pharmacother ; 152: 113120, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35653889

RESUMO

Circular peptides are attractive lead compounds for drug development; this study investigates the immunomodulatory effects of defined root powder extracts and isolated peptides (called cyclotides) from Carapichea ipecacuanha (Brot.) L. Andersson ('ipecac'). Changes in the viability, proliferation and function of activated human primary T cells were analysed using flow cytometry-based assays. Three distinct peptide-enriched extracts of pulverised ipecac root material were prepared via C18 solid-phase extraction and analysed by reversed-phase HPLC and mass spectrometry. These extracts induced caspase 3/7 dependent apoptosis, thus leading to a suppressed proliferation of activated T cells and a reduction of the number of cells in the G2 phase. Furthermore, the stimulated T cells had a lower activation potential and a reduced degranulation capacity after treatment with ipecac extracts. Six different cyclotides were isolated from C. ipecacuanha and an T cell proliferation inhibiting effect was determined. Furthermore, the degranulation capacity of the T cells was diminished specifically by some cyclotides. In contrast to kalata B1 and its analog T20K, secretion of IL-2 and IFN- γ was not affected by any of the caripe cyclotides. The findings add to our increased understanding of the immunomodulating effects of cyclotides, and may provide a basis for the use of ipecac extracts for immunomodulation in conditions associated with an exessive immune responses.


Assuntos
Ciclotídeos , Proliferação de Células , Ciclotídeos/farmacologia , Humanos , Ipeca/farmacologia , Ativação Linfocitária , Linfócitos , Peptídeos Cíclicos
3.
Front Pharmacol ; 13: 888961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712712

RESUMO

Since viral infectious diseases continue to be a global health threat, new antiviral drugs are urgently needed. A unique class of therapeutic compounds are antimicrobial peptides (AMPs). They can be found in humans, bacteria and plants. Plants express a wide variety of such defense peptides as part of their innate immune system to protect from invading pathogens. Cyclotides are non-classical AMPs that share a similar structure. Their unique topology consists of a circular peptide backbone and disulfide bonds. In previous studies they have been attributed to a wide range of biological activities. To identify novel cyclotides with antiviral activity, we established a library of plant extracts largely consisting of cyclotide-rich species and screened them as inhibitors of HIV-1 infection. Subsequent extraction and fractionation revealed four cyclotide-containing subfractions from Viola tricolor with antiviral activity. These subfractions inhibited HIV-1 infection with IC50 values between 0.6 and 11.2 µg/ml, and selectivity indices of up to 8.1. The identification and characterization of antiviral cyclotides and the determination of the antiviral mechanisms may allow to develop novel agents to combat viral infections. Therefore, cyclotides represent a natural source of bioactive molecules with prospects for development as therapeutics.

4.
J Nat Prod ; 84(8): 2238-2248, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34308635

RESUMO

Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low µM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.


Assuntos
Ciclotídeos/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Cephaelis/química , Células HEK293 , Humanos , Ligantes , Extratos Vegetais/química
5.
J Med Chem ; 64(13): 9042-9055, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34162205

RESUMO

The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower (Helianthus annuus) preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.


Assuntos
Dor Abdominal/tratamento farmacológico , Analgésicos/farmacologia , Peptídeos Cíclicos/farmacologia , Extratos Vegetais/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/química , Animais , Células Cultivadas , Doença Crônica , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células HEK293 , Helianthus/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Extratos Vegetais/síntese química , Extratos Vegetais/química , Receptores Opioides kappa/metabolismo , Sementes/química , Relação Estrutura-Atividade
6.
J Nat Prod ; 83(11): 3305-3314, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33118348

RESUMO

Plant peptide protease inhibitors are important molecules in seed storage metabolism and to fight insect pests. Commonly they contain multiple disulfide bonds and are exceptionally stable molecules. In this study, a novel peptide protease inhibitor from beetroot (Beta vulgaris) termed bevuTI-I was isolated, and its primary structure was determined via mass spectrometry-based amino acid sequencing. By sequence homology analysis a few peptides with high similarity to bevuTI-I, also known as the Mirabilis jalapa trypsin inhibitor subfamily of knottin-type protease inhibitors, were discovered. Hence, we assessed bevuTI-I for inhibitory activity toward trypsin (IC50 = 471 nM) and human prolyl oligopeptidase (IC50 = 11 µM), which is an emerging drug target for neurodegenerative and inflammatory disorders. Interestingly, using a customized bioinformatics approach, bevuTI-I was found to be the missing link to annotate 243 novel sequences of M. jalapa trypsin inhibitor-like peptides. According to their phylogenetic distribution they appear to be common in several plant families. Therefore, the presented approach and our results may help to discover and classify other plant-derived cystine knot peptides, a class of plant molecules that play important functions in plant physiology and are currently being explored as lead molecules and scaffolds in drug development.


Assuntos
Beta vulgaris/química , Cistina/química , Descoberta de Drogas , Peptídeos/química , Proteínas de Plantas/química , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Filogenia , Proteólise , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Biomolecules ; 10(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948080

RESUMO

The plant Citrullus colocynthis, a member of the squash (Cucurbitaceae) family, has a long history in traditional medicine. Based on the ancient knowledge about the healing properties of herbal preparations, plant-derived small molecules, e.g., salicylic acid, or quinine, have been integral to modern drug discovery. Additionally, many plant families, such as Cucurbitaceae, are known as a rich source for cysteine-rich peptides, which are gaining importance as valuable pharmaceuticals. In this study, we characterized the C. colocynthis peptidome using chemical modification of cysteine residues, and mass shift analysis via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We identified the presence of at least 23 cysteine-rich peptides in this plant, and eight novel peptides, named citcol-1 to -8, with a molecular weight between ~3650 and 4160 Da, were purified using reversed-phase high performance liquid chromatography (HPLC), and their amino acid sequences were determined by de novo assignment of b- and y-ion series of proteolytic peptide fragments. In silico analysis of citcol peptides revealed a high sequence similarity to trypsin inhibitor peptides from Cucumis sativus, Momordica cochinchinensis, Momordica macrophylla and Momordica sphaeroidea. Using genome/transcriptome mining it was possible to identify precursor sequences of this peptide family in related Cucurbitaceae species that cluster into trypsin inhibitor and antimicrobial peptides. Based on our analysis, the presence or absence of a crucial Arg/Lys residue at the putative P1 position may be used to classify these common cysteine-rich peptides by functional properties. Despite sequence homology and the common classification into the inhibitor cysteine knot family, these peptides appear to have diverse and additional bioactivities yet to be revealed.


Assuntos
Citrullus colocynthis/genética , Cucurbitaceae/genética , Cisteína/genética , Peptídeos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Citrullus colocynthis/metabolismo , Cucurbitaceae/classificação , Cucurbitaceae/metabolismo , Cisteína/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA