RESUMO
Previous studies have reported that cocaine exposure in utero results in structural and functional alterations in the development of the anterior cingulate cortex (ACC). In the present study, the effects of maternal cocaine dosage and of cocaine-elicited maternal seizures on the progeny were studied. The incidence of maternal generalized tonic clonic seizures (GTCSs) elicited by cocaine was recorded. No GTCSs were elicited in pregnant rabbits by doses of 2 or 3 mg/kg of cocaine, but GTCSs were sometimes elicited by the highest dose (4 mg/kg per injection). We analyzed the offspring of cocaine-exposed and control animals using three assays of ACC development: (i) the structure of apical dendrites of pyramidal neurons, (ii) the distribution of a calcium binding protein (parvalbumin) in the dendrites of GABAergic neurons, and (iii) coupling of D1-like receptors and their G proteins. In all progeny of rabbits exposed to 3 or 4 mg/kg of cocaine during pregnancy, there was a significant change in the structure of apical dendrites, a significant increase in the number of dendrites of GABAergic neurons which were parvalbumin immunoreactive, and a significant reduction in D1/G protein coupling. In assays of apical dendrites, the effects on offspring of rabbits given 2 mg/kg cocaine were as pronounced as in offspring of rabbits given 3 or 4 mg/kg, but the effects on parvalbumin immunoreactivity and D1/G protein coupling were reduced at this low dose. Thus, previous findings of ACC developmental abnormalities in offspring of rabbits given a dose of 4 mg/kg were replicated, the effects were shown to be dose-related and to be independent of maternal seizures. A mechanism by which dysfunction of the D1 receptor system could mediate cocaine-associated changes in all three parameters of ACC structure and function is discussed.
Assuntos
Córtex Cerebral/efeitos dos fármacos , Cocaína/farmacologia , Troca Materno-Fetal/fisiologia , Entorpecentes/farmacologia , Convulsões/patologia , Animais , Biomarcadores , Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas Associadas aos Microtúbulos/análise , Proteínas do Tecido Nervoso/análise , Parvalbuminas/análise , Gravidez , Células Piramidais/ultraestrutura , Coelhos , Convulsões/fisiopatologia , Ácido gama-Aminobutírico/análiseRESUMO
Primary visual cortex was ablated unilaterally in neonatal rabbits. Following a survival of 2-4 months, retrograde degeneration of the dorsal lateral geniculate nucleus (LGd) was assessed, and reorganization of retinofugal pathways was studied using methods of anretrograde transport of [3H]proline or of horseradish peroxidase. A complete lesion of primary visual cortex resulted in complete retrograde degeneration of the LGd with no sparing of any class of neurons. The terminations of retinofugal axons in the pretectum and thalamus were compared with those observed in normal animals. No major reorganization of ipsilateral retinofugal projections was observed in either the thalamus and pretectum ipsilateral to the ablated cortex, or in the thalamus and pretectum contralateral to the ablated cortex. However, contralateral retinofugal projections to the thalamus and to the pretectum ipsilateral to the ablated cortex were significantly different from normal. In the thalamus, the projections to the lateral posterior nucleus were expanded in area and increased in density. In the pretectum, the projections to the rostral pretectal areas were greatly increased in area, especially in the region of the olivary pretectal nucleus and posterior pretectal nucleus. However, the density of these projections was not increased relative to normal. Consideration of these results in relation to other published data on the anatomical consequences of neonatal visual cortex lesions, both in mammals which show behavioral sparing following neonatal visual cortex lesions and in mammals which, like the rabbit, show no behavioral sparing, suggests that: (1) behavioral sparing may correlate with patterns of survival or death of neurons in the thalamus and retina; and (2) reorganization of retinofugal pathways is not necessarily associated with behavioral sparing.
Assuntos
Plasticidade Neuronal , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Peroxidase do Rábano Silvestre , Prolina , Coelhos , Células Ganglionares da Retina/citologia , Colículos Superiores/citologia , Tálamo/citologiaRESUMO
Autoradiographic methods were used to compare the ipsilateral and contralateral retinothalamic projections in pigmented Dutch-Belted rabbits that had neonatal monocular enucleation with the projections found in normally reared rabbits. In the normal adult rabbit, there is dense label throughout the dorsal lateral geniculate nucleus (LGd) except for a decreased label density in the region corresponding to the ipsilateral input. Following neonatal monocular enucleation, the contralateral projection fills in the part of the LGd corresponding to the ipsilateral input. Our data indicate that following monocular enucleation, two processes occur: an arrest of the segregation process and an expansion of the contralateral projection into the space normally containing the terminals of the ipsilateral projection. In addition, this filling in of the terminal space occurs relatively rapidly and is completed by day 14. No changes, however, were observed in the ipsilateral projection to the LGd. Unlike the LGd, the ventral lateral geniculate nucleus and the intergeniculate leaflet showed increases in the size of the ipsilateral projection region, and no changes in the contralateral projection. The present findings suggest that there may be different mechanisms governing whether alterations in the distribution of retinothalamic projections will occur in either the ipsilateral or contralateral nucleus.