RESUMO
Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.
Assuntos
Receptor Nuclear Órfão DAX-1 , Receptor alfa de Estrogênio , Hipotálamo , Kisspeptinas , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismoRESUMO
Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.
Assuntos
Glucagon , Redução de Peso , Camundongos , Animais , Glucagon/metabolismo , Metabolismo Energético/fisiologia , Receptores de Glucagon/metabolismo , Camundongos Obesos , Aminoácidos/farmacologiaRESUMO
OBJECTIVE: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. DESIGN: Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. RESULTS: Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. CONCLUSION: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.
Assuntos
Microbioma Gastrointestinal/fisiologia , Insulina/metabolismo , Inulina , Metaboloma/fisiologia , Obesidade , Sobrepeso , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Inulina/administração & dosagem , Inulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/dietoterapia , Obesidade/metabolismo , Sobrepeso/diagnóstico , Sobrepeso/dietoterapia , Sobrepeso/metabolismo , Propionatos/administração & dosagem , Propionatos/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND: Patients with multiple injuries or sepsis requiring intensive care treatment invariably develop a catabolic state with resultant loss of lean body mass, for which there are currently no effective treatments. Recovery can take months and mortality is high. We hypothesise that treatment with the orexigenic and anti-inflammatory gastric hormone, ghrelin may attenuate the loss of body mass following critical illness and improve recovery. METHODS: Male Wistar rats received an intraperitoneal injection of the fungal cell wall derivative zymosan to induce a prolonged peritonitis and consequent critical illness. Commencing at 48h after zymosan, animals were randomised to receive a continuous infusion of ghrelin or vehicle control using a pre-implanted subcutaneous osmotic mini-pump, and continued for 10 days. RESULTS: Zymosan peritonitis induced significant weight loss and reduced food intake with a nadir at Day 2 and gradual recovery thereafter. Supra-physiologic plasma ghrelin levels were achieved in the treated animals. Ghrelin-treated rats ate more food and gained more body mass than controls. Ghrelin increased adiposity and promoted carbohydrate over fat metabolism, but did not alter total body protein, muscle strength nor muscle morphology. Muscle mass and strength remained significantly reduced in all zymosan-treated animals, even at ten days post-insult. CONCLUSIONS: Continuous infusion of ghrelin increased body mass and food intake, but did not increase muscle mass nor improve muscle function, in a long-term critical illness recovery model. Further studies with pulsatile ghrelin delivery or additional anabolic stimuli may further clarify the utility of ghrelin in survivors of critical illness.
Assuntos
Composição Corporal/efeitos dos fármacos , Caquexia/tratamento farmacológico , Grelina/farmacologia , Músculo Esquelético/fisiopatologia , Peritonite/metabolismo , Animais , Peso Corporal , Caquexia/etiologia , Caquexia/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ingestão de Energia , Humanos , Masculino , Contração Muscular , Força Muscular , Peritonite/complicações , Peritonite/fisiopatologia , Ratos WistarRESUMO
Kisspeptins regulate the mammalian reproductive axis by stimulating release of gonadotrophin releasing hormone (GnRH). Different length kisspeptins (KP) are found of 54, 14, 13 or 10 amino-acids which share a common C-terminal 10-amino acid sequence. KP-54 and KP-10 have been widely used to stimulate the reproductive axis but data suggest that KP-54 and KP-10 are not equally effective at eliciting reproductive hormone secretion after peripheral delivery. To confirm this, we analysed the effect of systemic administration of KP-54 or KP-10 on luteinizing hormone (LH) secretion into the bloodstream of male mice. Plasma LH measurements 10 min or 2 hours after kisspeptin injection showed that KP-54 can sustain LH release far longer than KP-10, suggesting a differential mode of action of the two peptides. To investigate the mechanism for this, we evaluated the pharmacokinetics of the two peptides in vivo and their potential to cross the blood brain barrier (BBB). We found that KP-54 has a half-life of ~32 min in the bloodstream, while KP-10 has a half-life of ~4 min. To compensate for this difference in half-life, we repeated injections of KP-10 every 10 min over 1 hr but failed to reproduce the sustained rise in LH observed after a single KP-54 injection, suggesting that the failure of KP-10 to sustain LH release may not just be related to peptide clearance. We tested the ability of peripherally administered KP-54 and KP-10 to activate c-FOS in GnRH neurons behind the blood brain barrier (BBB) and found that only KP-54 could do this. These data are consistent with KP-54 being able to cross the BBB and suggest that KP10 may be less able to do so.
Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Kisspeptinas/farmacologia , Análise de Variância , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Fármacos do Sistema Nervoso Central/farmacocinética , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Kisspeptinas/farmacocinética , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Masculino , Camundongos da Linhagem 129 , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Kisspeptin is a hypothalamic peptide hormone that plays a pivotal role in pubertal onset and reproductive function. Previous studies have examined hypothalamic kisspeptin mRNA expression, either through in situ hybridisation or real-time RT-PCR, as a means quantifying kisspeptin gene expression. However, mRNA expression levels are not always reflected in levels of the translated protein. Kisspeptin-immunoreactivity (IR) has been extensively examined using immunohistochemistry, enabling detection and localisation of kisspeptin perikaya in the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). However, quantification of kisspeptin-IR remains challenging. We developed a specific rodent radioimmunoassay assay (RIA) capable of detecting and quantifying kisspeptin-IR in rodent tissues. The RIA uses kisspeptin-10 as a standard and radioactive tracer, combined with a commercially available antibody raised to the kisspeptin-10 fragment. Adult female wistar rat brain samples were sectioned at 300 µm and the ARC and AVPV punch micro-dissected. Brain punches were homogenised in extraction buffer and assayed with rodent kisspeptin-RIA. In accord with the pattern of kisspeptin mRNA expression, kisspeptin-IR was detected in both the ARC (47.1±6.2 fmol/punch, mean±SEM nâ=â15) and AVPV (7.6±1.3 fmol/punch, mean±SEM nâ=â15). Kisspeptin-IR was also detectable in rat placenta (1.26±0.15 fmol/mg). Reverse phase high pressure liquid chromatography analysis showed that hypothalamic kisspeptin-IR had the same elution profile as a synthetic rodent kisspeptin standard. A specific rodent kisspeptin-RIA will allow accurate quantification of kisspeptin peptide levels within specific tissues in rodent experimental models.
Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Kisspeptinas/imunologia , Radioimunoensaio/métodos , Ratos , Ratos Wistar , Sensibilidade e EspecificidadeRESUMO
Obesity remains a major worldwide health problem, with current medical treatments being poorly effective. Nutrient sensing allows organs such as the GI tract and the brain to recognize and respond to fuel substrates such as carbohydrates, protein and fats. Specialized neural and hormonal pathways exist to facilitate and regulate these chemosensory mechanisms. Manipulation of factors involved in either central or peripheral chemosensory pathways may provide possible targets for the manipulation of appetite. However, further research is required to assess the utility of this approach to developing novel anti-obesity agents.
RESUMO
The kisspeptin/kisspeptin receptor (KISS1R) system is a critical regulator of reproductive function. The kisspeptins are potent stimulators of the hypothalamic-pituitary-gonadal (HPG) axis via their actions ongonadotropin-releasing hormone. Therefore, kisspeptins represent putative drug targets for the treatment of reproductive diseases. Kisspeptins of 10, 13, 14 and 54 amino acids in length have been identified, all of which contain a C-terminal decapeptide that is essential for biological activity. The longest form, kisspeptin-54, may be the most bioactive in vivo. Moreover, the pattern of kisspeptin administration is important; whereas single or intermittent injections of kisspeptin generally stimulate the HPG axis, continuous administration leads to the desensitization of the HPG axis to the effects of the peptide. Several kisspeptin analogs have been developed, and are discussed in relation to their activity at the KISS1R and to their in vivo HPG axis effects.
Assuntos
Sistema Endócrino/metabolismo , Gônadas/metabolismo , Hipotálamo/metabolismo , Oligopeptídeos/metabolismo , Hipófise/metabolismo , Animais , Humanos , LigantesRESUMO
OBJECTIVE: Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS: We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebroventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanism of action by determining sites of neuronal activation after ICV injection of PK2, the hypothalamic site of action of PK2, and interaction between PK2 and other hypothalamic neuropeptides regulating energy homeostasis. To investigate PK2's potential as a therapeutic target, we investigated the effect of chronic administration in lean and obese mice. RESULTS: Hypothalamic PK2 expression was reduced by fasting. ICV administration of PK2 to rats potently inhibited food intake, whereas anti-PK2 antibody increased food intake, suggesting that PK2 is an anorectic neuropeptide. ICV administration of PK2 increased c-fos expression in proopiomelanocortin neurons of the arcuate nucleus (ARC) of the hypothalamus. In keeping with this, PK2 administration into the ARC reduced food intake and PK2 increased the release of alpha-melanocyte-stimulating hormone (alpha-MSH) from ex vivo hypothalamic explants. In addition, ICV coadministration of the alpha-MSH antagonist agouti-related peptide blocked the anorexigenic effects of PK2. Chronic peripheral administration of PK2 reduced food and body weight in lean and obese mice. CONCLUSIONS: This is the first report showing that PK2 has a role in appetite regulation and its anorectic effect is mediated partly via the melanocortin system.
Assuntos
Ingestão de Energia/efeitos dos fármacos , Hormônios Gastrointestinais/farmacologia , Hormônios Gastrointestinais/fisiologia , Neuropeptídeos/farmacologia , Neuropeptídeos/fisiologia , Obesidade/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Hormônios Gastrointestinais/genética , Regulação da Expressão Gênica , Hipotálamo/fisiologia , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuropeptídeos/genética , RNA Mensageiro/genética , Ratos , Ratos WistarRESUMO
BACKGROUND: Kisspeptin is a critical regulator of normal reproductive function. A single injection of kisspeptin in healthy human volunteers potently stimulates gonadotropin release. However, the effects of kisspeptin on gonadotropin release in women with hypothalamic amenorrhea (HA) and the effects of repeated administration of kisspeptin to humans are unknown. AIM: The aim of this study was to determine the effects of acute and chronic kisspeptin administration on gonadotropin release in women with HA. METHODS: We performed a prospective, randomized, double-blinded, parallel design study. Women with HA received twice-daily sc injections of kisspeptin (6.4 nmol/kg) or 0.9% saline (n = 5 per group) for 2 wk. Changes in serum gonadotropin and estradiol levels, LH pulsatility, and ultrasound measurements of reproductive activity were assessed. RESULTS: On the first injection day, potent increases in serum LH and FSH were observed after sc kisspeptin injection in women with HA (mean maximal increment from baseline within 4 h after injection: LH, 24.0 +/- 3.5 IU/liter; FSH, 9.1 +/- 2.5 IU/liter). These responses were significantly reduced on the 14th injection day (mean maximal increment from baseline within 4 h postinjection: LH, 2.5 +/- 2.2 IU/liter, P < 0.05; FSH, 0.5 +/- 0.5 IU/liter, P < 0.05). Subjects remained responsive to GnRH after kisspeptin treatment. No significant changes in LH pulsatility or ultrasound measurements of reproductive activity were observed. CONCLUSION: Acute administration of kisspeptin to women with infertility due to HA potently stimulates gonadotropin release, but chronic administration of kisspeptin results in desensitization to its effects on gonadotropin release. These data have important implications for the development of kisspeptin as a novel therapy for reproductive disorders in humans.
Assuntos
Amenorreia/tratamento farmacológico , Gonadotropinas/metabolismo , Taquifilaxia/fisiologia , Proteínas Supressoras de Tumor/uso terapêutico , Adulto , Índice de Massa Corporal , Peso Corporal , Feminino , Hormônio Foliculoestimulante/sangue , Gonadotropinas/sangue , Humanos , Hipotálamo/fisiopatologia , Kisspeptinas , Hormônio Luteinizante/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteínas Supressoras de Tumor/efeitos adversos , Proteínas Supressoras de Tumor/química , Aumento de Peso , Adulto JovemRESUMO
Ghrelin is a gastric peptide that regulates appetite and GH secretion. Circulating ghrelin levels are elevated by fasting and suppressed postprandially. However, the mechanisms regulating circulating ghrelin levels are unclear. Oxyntomodulin is an anorexic peptide hormone released from L cells in the gut. We investigated the effects of intracerebroventricular (icv) administration of oxyntomodulin on circulating ghrelin levels. The icv administration of 1, 3, or 10 nmol oxyntomodulin reduced circulating acylated and total (acylated and des-acylated) ghrelin 60 min after icv injection. Administration of 1 nmol oxyntomodulin directly into the arcuate nucleus of the hypothalamus significantly reduced total and acylated ghrelin levels, and administration of 3 nmol oxyntomodulin into the lateral ventricle induced c-fos mRNA expression in arcuate nucleus neurons expressing the glucagon-like peptide-1 (GLP-1) receptor. In a final study, the reduction in total ghrelin observed after icv injection of 3 nmol oxyntomodulin was blocked by coadministration of the GLP-1 receptor antagonist exendin (9-39). These studies suggest oxyntomodulin reduces peripheral ghrelin levels via GLP-1 receptor-dependent hypothalamic pathways. Postprandial release of anorexic gut hormones may thus act centrally to contribute to the postprandial reduction in circulating ghrelin.
Assuntos
Grelina/sangue , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Oxintomodulina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Injeções , Insulina/sangue , Masculino , Camundongos , Oxintomodulina/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Radioimunoensaio , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismoRESUMO
Xenin is a 25-amino acid peptide highly homologous to neurotensin. Xenin and neurotensin are reported to have similar biological effects. Both reduce food intake when administered centrally to fasted rats. We aimed to clarify and compare the effects of these peptides on food intake and behavior. We confirm that intracerebroventricular (ICV) administration of xenin or neurotensin reduces food intake in fasted rats, and demonstrate that both reduce food intake in satiated rats during the dark phase. Xenin reduced food intake more potently than neurotensin following ICV administration. ICV injection of either peptide in the dark phase increased resting behavior. Xenin and neurotensin stimulated the release of corticotrophin-releasing hormone (CRH) from ex vivo hypothalamic explants, and administration of alpha-helical CRH attenuated their effects on food intake. Intraperitoneal (IP) administration of xenin or neurotensin acutely reduced food intake in fasted mice and ad libitum fed mice in the dark phase. However, chronic continuous or twice daily peripheral administration of xenin or neurotensin to mice had no significant effect on daily food intake or body weight. These studies confirm that ICV xenin or neurotensin can acutely reduce food intake and demonstrate that peripheral administration of xenin and neurotensin also reduces food intake. This may be partly mediated by changes in hypothalamic CRH release. The lack of chronic effects on body weight observed in our experiments suggests that xenin and neurotensin are unlikely to be useful as obesity therapies.
Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Hipotálamo/metabolismo , Neurotensina/metabolismo , Peptídeos/metabolismo , Animais , Peso Corporal , Hormônio Liberador da Corticotropina/metabolismo , Jejum/metabolismo , Bombas de Infusão Implantáveis , Infusões Subcutâneas , Injeções Intraperitoneais , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotensina/administração & dosagem , Técnicas de Cultura de Órgãos , Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Fatores de TempoRESUMO
Cocaine- and amphetamine-regulated transcript (CART) codes for a neuropeptide system with a number of biological roles. The high conservation of CART across species suggests that it has an important role in mammalian physiology. CART is widely expressed in the central nervous system and the periphery, but is particularly concentrated in the hypothalamus. CART peptides, particularly CART (55-102), appear to have an important function in the regulation of energy homeostasis. This review aims to dissect the role of CART in appetite and energy expenditure. CART interacts with a number of central appetite circuits. Hypothalamic CART expression is regulated by a number of peripheral factors, including the adipose hormone leptin. Intracerebroventricular administration of CART (55-102) reduces appetite and stimulates energy expenditure. Hypothalamic CART may also play an orexigenic role under specific circumstances, however, as injection of CART (55-102) into specific hypothalamic nuclei increases food intake.
Assuntos
Apetite , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Sequência de Aminoácidos , Animais , Sistema Nervoso Central , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Leptina/fisiologia , Camundongos , Dados de Sequência Molecular , Mutação , Neuropeptídeos/fisiologiaRESUMO
Intracerebroventricular (ICV) administration of Neuromedin U (NMU), a hypothalamic neuropeptide, or leptin, an adipostat hormone released from adipose tissue, reduces food intake and increases energy expenditure. Leptin stimulates the release of NMU in vitro, and NMU expression is reduced in models of low or absent leptin. We investigated the role of NMU in mediating leptin-induced satiety. ICV administration of anti-NMU immunoglobulin G (IgG) (5 nmol) to satiated rats significantly increased food intake 4 h after injection, an effect seen for =8 h after injection. ICV administration of NMU (1 nmol) to fasted rats reduced food intake 1 h after injection compared with control, an effect attenuated by pretreatment with anti-NMU IgG. ICV administration of leptin (0.625 nmol) reduced 24-h food intake. This was partially attenuated by the administration of anti-NMU IgG [24 h after onset of dark phase: vehicle, 22.5 +/- 2.0 g; leptin, 13.7 +/- 2.3 g (P < 0.005 vs. vehicle), leptin/NMU IgG, 19.4 +/- 1.3 g (P < 0.05 vs. leptin)]. Intraperitoneal administration of leptin (1.1 mg/kg body wt) reduced 24-h food intake. This was partially attenuated by ICV administration of anti-NMU IgG [24 h after onset of dark phase: vehicle, 31.4 +/- 4.9 g; leptin, 20.8 +/- 2.6 g (P < 0.01 vs. vehicle); leptin/NMU IgG, 28.7 +/- 1.1 g (P < 0.01 vs. leptin)]. These results suggest that NMU plays a physiological role in the regulation of appetite and partially mediates the leptin-induced satiety.
Assuntos
Regulação do Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Leptina/fisiologia , Neuropeptídeos/fisiologia , Análise de Variância , Animais , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Leptina/administração & dosagem , Masculino , Neuropeptídeos/administração & dosagem , Ratos , Ratos Wistar , Estatísticas não ParamétricasRESUMO
Nociceptin or orphanin FQ (N/OFQ) and its receptor NOP1 are expressed in hypothalamic nuclei involved in energy homeostasis. N/OFQ administered by intracerebroventricular or arcuate nucleus (ARC) injection increases food intake in satiated rats. The mechanisms by which N/OFQ increases food intake are unknown. We hypothesized that N/OFQ may regulate hypothalamic neurons containing peptides involved in the control of food intake such as cocaine- and amphetamine-regulated transcript (CART), alphaMSH, neuropeptide Y (NPY), and agouti-related protein (AgRP). We investigated the ability of N/OFQ to alter the release of CART, alphaMSH, NPY, and AgRP using ex vivo medial basal hypothalamic explants. Incubation of hypothalamic explants with N/OFQ (1, 10, 100 nM) resulted in significant changes in CART and AgRP release. One hundred nanomoles N/OFQ caused a 33% decrease in release of CART (55-102) immunoreactivity (IR) and increased release of AgRP-IR to 163% but produced no change in either alphaMSH-IR or NPY-IR. Double immunocytochemistry/in situ hybridization demonstrated that CART-IR and NOP1 mRNA are colocalized throughout the hypothalamus, in particular in the paraventricular nucleus, lateral hypothalamus, zona incerta, and ARC, providing an anatomical basis for N/OFQ action on CART release. Dual in situ hybridization demonstrated that AgRP neurons in the ARC also express the NOP1 receptor. Our data suggest that nociceptin via the NOP1 receptor may increase food intake by decreasing the release of the anorectic peptide CART and increasing the release of the orexigenic peptide AgRP.
Assuntos
Regulação da Expressão Gênica , Hipotálamo/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Peptídeos Opioides/genética , Peptídeos Opioides/farmacologia , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/genética , Proteína Relacionada com Agouti , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/fisiologia , Ingestão de Energia , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Neuropeptídeo Y/metabolismo , Técnicas de Cultura de Órgãos , Hormônios Peptídicos/metabolismo , Ratos , Ratos Wistar , Receptores Opioides , Ribonucleases , Receptor de Nociceptina , NociceptinaRESUMO
alpha-Melanocyte-stimulating hormone (alpha-MSH) is an agonist, and agouti-related protein (Agrp) an endogenous antagonist at the melanocortin 3 and 4 receptors which are found in the central nervous system (CNS). We have examined the effect of alpha-MSH and Agrp on the hypothalamo-pituitary-adrenal (HPA) axis in vitro and in vivo in male rats. Intraparaventricular nuclear (iPVN) injection of [Nle(4),D-Phe(7)]-alpha-MSH (NDP-MSH) (a long-acting alpha-MSH analogue) increased plasma adrenocorticotropic hormone (ACTH) (10 min post-injection: 25.0 +/- 3.9 vs. saline 10.9 +/- 2.0, p < 0.05) and plasma corticosterone (10 min post-injection: 174.1 +/- 14.2 vs. saline 124.7 +/- 16.3 ng/ml, p < 0.05). iPVN injection of Agrp(83-132) increased plasma ACTH (24.2 +/- 4.0 vs. saline 10.1 +/- 1.0 pg/ml, p < 0.01). The combination of NDP-MSH and Agrp(83-132) administered iPVN significantly increased plasma ACTH (10 min post-injection: 21.3 +/- 3.8 vs. 10.9 +/- 2.0, p < 0.05) and plasma corticosterone (10 min post-injection: 169.0 +/- 15.1 vs. saline 124.7 +/- 16.3 ng/ml, p < 0.05), but there was no additive effect. Hypothalamic explants treated with alpha-MSH (100 nM) resulted in a 159 +/- 23% increase in corticotropin-releasing hormone (CRH) release (p < 0.01) and 175 +/- 12% increase in arginine vasopressin (AVP) release (p < 0.001) compared to basal. Agrp(83-132) (100 nM) administered to hypothalamic explants resulted in a 161 +/- 20% increase in CRH (p < 0.01) and 174 +/- 13% increase in AVP release (p < 0.001) compared to basal. Hypothalamic explants treated with the combination of alpha-MSH and Agrp(83-132) (100 nM) resulted in a 179 +/- 31% increase in CRH release (p < 0.01) and 130 +/- 9% increase in AVP release (p < 0.01) compared to basal, but there was no additive effect. This is the first report that both alpha-MSH and Agrp(83-132) stimulate the HPA axis. The combination of alpha-MSH and Agrp(83-132) has no additive effect in vitro and in vivo in male rats. These results suggest that there may be another receptor independent of the known melanocortin receptors at which Agrp is acting.